我的模型出了什么问题?识别语义数据切分的系统性问题

Chenyang Yang, Yining Hong, Grace A. Lewis, Tongshuang Wu, Christian Kästner
{"title":"我的模型出了什么问题?识别语义数据切分的系统性问题","authors":"Chenyang Yang, Yining Hong, Grace A. Lewis, Tongshuang Wu, Christian Kästner","doi":"arxiv-2409.09261","DOIUrl":null,"url":null,"abstract":"Machine learning models make mistakes, yet sometimes it is difficult to\nidentify the systematic problems behind the mistakes. Practitioners engage in\nvarious activities, including error analysis, testing, auditing, and\nred-teaming, to form hypotheses of what can go (or has gone) wrong with their\nmodels. To validate these hypotheses, practitioners employ data slicing to\nidentify relevant examples. However, traditional data slicing is limited by\navailable features and programmatic slicing functions. In this work, we propose\nSemSlicer, a framework that supports semantic data slicing, which identifies a\nsemantically coherent slice, without the need for existing features. SemSlicer\nuses Large Language Models to annotate datasets and generate slices from any\nuser-defined slicing criteria. We show that SemSlicer generates accurate slices\nwith low cost, allows flexible trade-offs between different design dimensions,\nreliably identifies under-performing data slices, and helps practitioners\nidentify useful data slices that reflect systematic problems.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Is Wrong with My Model? Identifying Systematic Problems with Semantic Data Slicing\",\"authors\":\"Chenyang Yang, Yining Hong, Grace A. Lewis, Tongshuang Wu, Christian Kästner\",\"doi\":\"arxiv-2409.09261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning models make mistakes, yet sometimes it is difficult to\\nidentify the systematic problems behind the mistakes. Practitioners engage in\\nvarious activities, including error analysis, testing, auditing, and\\nred-teaming, to form hypotheses of what can go (or has gone) wrong with their\\nmodels. To validate these hypotheses, practitioners employ data slicing to\\nidentify relevant examples. However, traditional data slicing is limited by\\navailable features and programmatic slicing functions. In this work, we propose\\nSemSlicer, a framework that supports semantic data slicing, which identifies a\\nsemantically coherent slice, without the need for existing features. SemSlicer\\nuses Large Language Models to annotate datasets and generate slices from any\\nuser-defined slicing criteria. We show that SemSlicer generates accurate slices\\nwith low cost, allows flexible trade-offs between different design dimensions,\\nreliably identifies under-performing data slices, and helps practitioners\\nidentify useful data slices that reflect systematic problems.\",\"PeriodicalId\":501278,\"journal\":{\"name\":\"arXiv - CS - Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习模型会犯错,但有时很难识别错误背后的系统性问题。实践者会参与各种活动,包括错误分析、测试、审计和红队,以形成关于其模型可能出错(或已经出错)的假设。为了验证这些假设,实践者会使用数据切片来识别相关示例。然而,传统的数据切片受到可用功能和程序切片功能的限制。在这项工作中,我们提出了一个支持语义数据切片的框架--SemSlicer,它无需现有特征即可识别语义连贯的切片。SemSlicer 利用大型语言模型来注释数据集,并根据任何用户定义的切片标准生成切片。我们的研究表明,SemSlicer 能够以较低的成本生成准确的切片,在不同的设计维度之间灵活权衡,可靠地识别性能不佳的数据切片,并帮助从业人员识别反映系统性问题的有用数据切片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Is Wrong with My Model? Identifying Systematic Problems with Semantic Data Slicing
Machine learning models make mistakes, yet sometimes it is difficult to identify the systematic problems behind the mistakes. Practitioners engage in various activities, including error analysis, testing, auditing, and red-teaming, to form hypotheses of what can go (or has gone) wrong with their models. To validate these hypotheses, practitioners employ data slicing to identify relevant examples. However, traditional data slicing is limited by available features and programmatic slicing functions. In this work, we propose SemSlicer, a framework that supports semantic data slicing, which identifies a semantically coherent slice, without the need for existing features. SemSlicer uses Large Language Models to annotate datasets and generate slices from any user-defined slicing criteria. We show that SemSlicer generates accurate slices with low cost, allows flexible trade-offs between different design dimensions, reliably identifies under-performing data slices, and helps practitioners identify useful data slices that reflect systematic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信