ComplexCodeEval:在更复杂代码上评估大型代码模型的基准

Jia Feng, Jiachen Liu, Cuiyun Gao, Chun Yong Chong, Chaozheng Wang, Shan Gao, Xin Xia
{"title":"ComplexCodeEval:在更复杂代码上评估大型代码模型的基准","authors":"Jia Feng, Jiachen Liu, Cuiyun Gao, Chun Yong Chong, Chaozheng Wang, Shan Gao, Xin Xia","doi":"arxiv-2409.10280","DOIUrl":null,"url":null,"abstract":"In recent years, the application of large language models (LLMs) to\ncode-related tasks has gained significant attention. However, existing\nevaluation benchmarks often focus on limited scenarios, such as code generation\nor completion, which do not reflect the diverse challenges developers face in\nreal-world contexts. To address this, we introduce ComplexCodeEval, a benchmark\ndesigned to assess LCMs in various development tasks, including code\ngeneration, completion, API recommendation, and test case generation. It\nincludes 3,897 Java samples and 7,184 Python samples from high-star GitHub\nrepositories, each annotated with function signatures, docstrings, and API\nreferences to simulate real development environments. Our experiments across\nten LCMs reveal that context improves performance and that data leakage can\nlead to overestimation, highlighting the need for more accurate evaluations.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code\",\"authors\":\"Jia Feng, Jiachen Liu, Cuiyun Gao, Chun Yong Chong, Chaozheng Wang, Shan Gao, Xin Xia\",\"doi\":\"arxiv-2409.10280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the application of large language models (LLMs) to\\ncode-related tasks has gained significant attention. However, existing\\nevaluation benchmarks often focus on limited scenarios, such as code generation\\nor completion, which do not reflect the diverse challenges developers face in\\nreal-world contexts. To address this, we introduce ComplexCodeEval, a benchmark\\ndesigned to assess LCMs in various development tasks, including code\\ngeneration, completion, API recommendation, and test case generation. It\\nincludes 3,897 Java samples and 7,184 Python samples from high-star GitHub\\nrepositories, each annotated with function signatures, docstrings, and API\\nreferences to simulate real development environments. Our experiments across\\nten LCMs reveal that context improves performance and that data leakage can\\nlead to overestimation, highlighting the need for more accurate evaluations.\",\"PeriodicalId\":501278,\"journal\":{\"name\":\"arXiv - CS - Software Engineering\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,大型语言模型(LLM)在代码相关任务中的应用受到了广泛关注。然而,现有的评估基准通常只关注有限的场景,如代码生成或完成,无法反映开发人员在现实世界中面临的各种挑战。为了解决这个问题,我们引入了 ComplexCodeEval,这是一个旨在评估各种开发任务中的 LCM 的基准,包括代码生成、完成、API 推荐和测试用例生成。它包括来自高星级 GitHub 仓库的 3,897 个 Java 样本和 7,184 个 Python 样本,每个样本都注释了函数签名、文档说明和 API 参考,以模拟真实的开发环境。我们对 LCM 的实验表明,上下文提高了性能,而数据泄露则会导致高估,这突出表明我们需要更准确的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code
In recent years, the application of large language models (LLMs) to code-related tasks has gained significant attention. However, existing evaluation benchmarks often focus on limited scenarios, such as code generation or completion, which do not reflect the diverse challenges developers face in real-world contexts. To address this, we introduce ComplexCodeEval, a benchmark designed to assess LCMs in various development tasks, including code generation, completion, API recommendation, and test case generation. It includes 3,897 Java samples and 7,184 Python samples from high-star GitHub repositories, each annotated with function signatures, docstrings, and API references to simulate real development environments. Our experiments across ten LCMs reveal that context improves performance and that data leakage can lead to overestimation, highlighting the need for more accurate evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信