{"title":"搅拌和静置对化学反应影响的比较","authors":"Xianting Huang, Jianyou Zhao, Qingxu Wang, Pengkai Fang, Wei Xie, Meng Chen, Hongliang Han, Lanlan Zhang, Jiatai Zhang, Fan Wang, Zhong-Quan Liu","doi":"10.1055/a-2384-7220","DOIUrl":null,"url":null,"abstract":"<p>For hundreds of years, it seems that people have needed stirring to conduct chemical experiments. This operation can be seen everywhere in chemical, pharmaceutical, and materials laboratories and factories. People generally believe that stirring helps with processes such as material dispersion, dissolution, and collision, thereby enabling more-efficient reactions. However, why do chemical reactions that occur in Nature not require stirring? What are the facts? For this purpose, we investigated a total of 329 organic chemical reactions in eight categories and 25 types, including 26 chemical reactions magnified to gram or even kilogram levels. Under the same conditions of temperature, humidity, pressure, and reaction time, we compared the reaction yields under stirring and standing conditions. More than 600 results showed that stirring or not stirring had almost no effect on the efficiency of chemical reactions in solution. If most chemists performing reactions turned off the agitator, it would not be difficult to imagine how much electricity could be saved!</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Effects of Stirring and Standing on Chemical Reactions\",\"authors\":\"Xianting Huang, Jianyou Zhao, Qingxu Wang, Pengkai Fang, Wei Xie, Meng Chen, Hongliang Han, Lanlan Zhang, Jiatai Zhang, Fan Wang, Zhong-Quan Liu\",\"doi\":\"10.1055/a-2384-7220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For hundreds of years, it seems that people have needed stirring to conduct chemical experiments. This operation can be seen everywhere in chemical, pharmaceutical, and materials laboratories and factories. People generally believe that stirring helps with processes such as material dispersion, dissolution, and collision, thereby enabling more-efficient reactions. However, why do chemical reactions that occur in Nature not require stirring? What are the facts? For this purpose, we investigated a total of 329 organic chemical reactions in eight categories and 25 types, including 26 chemical reactions magnified to gram or even kilogram levels. Under the same conditions of temperature, humidity, pressure, and reaction time, we compared the reaction yields under stirring and standing conditions. More than 600 results showed that stirring or not stirring had almost no effect on the efficiency of chemical reactions in solution. If most chemists performing reactions turned off the agitator, it would not be difficult to imagine how much electricity could be saved!</p> \",\"PeriodicalId\":22319,\"journal\":{\"name\":\"Synlett\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synlett\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2384-7220\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2384-7220","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Comparison of the Effects of Stirring and Standing on Chemical Reactions
For hundreds of years, it seems that people have needed stirring to conduct chemical experiments. This operation can be seen everywhere in chemical, pharmaceutical, and materials laboratories and factories. People generally believe that stirring helps with processes such as material dispersion, dissolution, and collision, thereby enabling more-efficient reactions. However, why do chemical reactions that occur in Nature not require stirring? What are the facts? For this purpose, we investigated a total of 329 organic chemical reactions in eight categories and 25 types, including 26 chemical reactions magnified to gram or even kilogram levels. Under the same conditions of temperature, humidity, pressure, and reaction time, we compared the reaction yields under stirring and standing conditions. More than 600 results showed that stirring or not stirring had almost no effect on the efficiency of chemical reactions in solution. If most chemists performing reactions turned off the agitator, it would not be difficult to imagine how much electricity could be saved!
期刊介绍:
SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.