数据分离地区气候适应性和本地化绘图的跨国比较分析

Ronald Katende
{"title":"数据分离地区气候适应性和本地化绘图的跨国比较分析","authors":"Ronald Katende","doi":"arxiv-2409.08765","DOIUrl":null,"url":null,"abstract":"Climate resilience across sectors varies significantly in low-income\ncountries (LICs), with agriculture being the most vulnerable to climate change.\nExisting studies typically focus on individual countries, offering limited\ninsights into broader cross-country patterns of adaptation and vulnerability.\nThis paper addresses these gaps by introducing a framework for cross-country\ncomparative analysis of sectoral climate resilience using meta-analysis and\ncross-country panel data techniques. The study identifies shared\nvulnerabilities and adaptation strategies across LICs, enabling more effective\npolicy design. Additionally, a novel localized climate-agriculture mapping\ntechnique is developed, integrating sparse agricultural data with\nhigh-resolution satellite imagery to generate fine-grained maps of agricultural\nproductivity under climate stress. Spatial interpolation methods, such as\nkriging, are used to address data gaps, providing detailed insights into\nregional agricultural productivity and resilience. The findings offer\npolicymakers tools to prioritize climate adaptation efforts and optimize\nresource allocation both regionally and nationally.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Country Comparative Analysis of Climate Resilience and Localized Mapping in Data-Sparse Regions\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.08765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate resilience across sectors varies significantly in low-income\\ncountries (LICs), with agriculture being the most vulnerable to climate change.\\nExisting studies typically focus on individual countries, offering limited\\ninsights into broader cross-country patterns of adaptation and vulnerability.\\nThis paper addresses these gaps by introducing a framework for cross-country\\ncomparative analysis of sectoral climate resilience using meta-analysis and\\ncross-country panel data techniques. The study identifies shared\\nvulnerabilities and adaptation strategies across LICs, enabling more effective\\npolicy design. Additionally, a novel localized climate-agriculture mapping\\ntechnique is developed, integrating sparse agricultural data with\\nhigh-resolution satellite imagery to generate fine-grained maps of agricultural\\nproductivity under climate stress. Spatial interpolation methods, such as\\nkriging, are used to address data gaps, providing detailed insights into\\nregional agricultural productivity and resilience. The findings offer\\npolicymakers tools to prioritize climate adaptation efforts and optimize\\nresource allocation both regionally and nationally.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低收入国家(LICs),各部门的气候适应能力差异很大,其中农业最容易受到气候变化的影响。现有的研究通常侧重于单个国家,对更广泛的跨国适应和脆弱性模式的洞察力有限。本文采用元分析和跨国面板数据技术,引入了一个跨国比较分析框架,对各部门的气候适应能力进行了分析,从而弥补了这些不足。该研究确定了低收入国家的共同脆弱性和适应战略,从而使政策设计更加有效。此外,还开发了一种新颖的本地化气候-农业绘图技术,将稀疏的农业数据与高分辨率卫星图像相结合,生成气候压力下农业生产力的精细地图。利用灌溉等空间插值方法解决了数据缺口问题,提供了对区域农业生产力和恢复力的详细见解。研究结果为政策制定者提供了确定气候适应工作的优先次序以及优化地区和国家资源分配的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Country Comparative Analysis of Climate Resilience and Localized Mapping in Data-Sparse Regions
Climate resilience across sectors varies significantly in low-income countries (LICs), with agriculture being the most vulnerable to climate change. Existing studies typically focus on individual countries, offering limited insights into broader cross-country patterns of adaptation and vulnerability. This paper addresses these gaps by introducing a framework for cross-country comparative analysis of sectoral climate resilience using meta-analysis and cross-country panel data techniques. The study identifies shared vulnerabilities and adaptation strategies across LICs, enabling more effective policy design. Additionally, a novel localized climate-agriculture mapping technique is developed, integrating sparse agricultural data with high-resolution satellite imagery to generate fine-grained maps of agricultural productivity under climate stress. Spatial interpolation methods, such as kriging, are used to address data gaps, providing detailed insights into regional agricultural productivity and resilience. The findings offer policymakers tools to prioritize climate adaptation efforts and optimize resource allocation both regionally and nationally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信