自洽最小化的多层次方法

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Nick Tsipinakis, Panos Parpas
{"title":"自洽最小化的多层次方法","authors":"Nick Tsipinakis, Panos Parpas","doi":"10.1007/s10957-024-02509-z","DOIUrl":null,"url":null,"abstract":"<p>The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"87 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Method for Self-Concordant Minimization\",\"authors\":\"Nick Tsipinakis, Panos Parpas\",\"doi\":\"10.1007/s10957-024-02509-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02509-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02509-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

与传统牛顿法相比,基于子采样、随机化或草图的二阶优化方法的分析存在两个严重缺陷。第一个不足是,对迭代的分析只证明了在问题结构的特定假设下是规模不变的。第二个不足是,二阶方法的快速收敛率只能通过对输入数据的假设来确定。在本文中,我们针对自洽函数提出了一种随机牛顿方法,以解决这两个不足。我们提出了自洽迭代-最小化-基于伽勒金的多级算法(SIGMA),并利用自洽函数理论确定了其超线性收敛率。我们的分析基于多网格优化方法之间的联系,以及粗粒度或低阶模型在计算搜索方向中的作用。我们利用分析中的洞察力,大大提高了二阶方法在机器学习应用中的性能。我们报告了令人鼓舞的初步实验结果,表明 SIGMA 在中型和大型问题上的表现都优于其他最先进的子采样/草图牛顿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multilevel Method for Self-Concordant Minimization

A Multilevel Method for Self-Concordant Minimization

The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信