{"title":"自洽最小化的多层次方法","authors":"Nick Tsipinakis, Panos Parpas","doi":"10.1007/s10957-024-02509-z","DOIUrl":null,"url":null,"abstract":"<p>The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Method for Self-Concordant Minimization\",\"authors\":\"Nick Tsipinakis, Panos Parpas\",\"doi\":\"10.1007/s10957-024-02509-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02509-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02509-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Multilevel Method for Self-Concordant Minimization
The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.