关于高维预测回归的 LASSO 推论

Zhan Gao, Ji Hyung Lee, Ziwei Mei, Zhentao Shi
{"title":"关于高维预测回归的 LASSO 推论","authors":"Zhan Gao, Ji Hyung Lee, Ziwei Mei, Zhentao Shi","doi":"arxiv-2409.10030","DOIUrl":null,"url":null,"abstract":"LASSO introduces shrinkage bias into estimated coefficients, which can\nadversely affect the desirable asymptotic normality and invalidate the standard\ninferential procedure based on the $t$-statistic. The desparsified LASSO has\nemerged as a well-known remedy for this issue. In the context of high\ndimensional predictive regression, the desparsified LASSO faces an additional\nchallenge: the Stambaugh bias arising from nonstationary regressors. To restore\nthe standard inferential procedure, we propose a novel estimator called\nIVX-desparsified LASSO (XDlasso). XDlasso eliminates the shrinkage bias and the\nStambaugh bias simultaneously and does not require prior knowledge about the\nidentities of nonstationary and stationary regressors. We establish the\nasymptotic properties of XDlasso for hypothesis testing, and our theoretical\nfindings are supported by Monte Carlo simulations. Applying our method to\nreal-world applications from the FRED-MD database -- which includes a rich set\nof control variables -- we investigate two important empirical questions: (i)\nthe predictability of the U.S. stock returns based on the earnings-price ratio,\nand (ii) the predictability of the U.S. inflation using the unemployment rate.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On LASSO Inference for High Dimensional Predictive Regression\",\"authors\":\"Zhan Gao, Ji Hyung Lee, Ziwei Mei, Zhentao Shi\",\"doi\":\"arxiv-2409.10030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LASSO introduces shrinkage bias into estimated coefficients, which can\\nadversely affect the desirable asymptotic normality and invalidate the standard\\ninferential procedure based on the $t$-statistic. The desparsified LASSO has\\nemerged as a well-known remedy for this issue. In the context of high\\ndimensional predictive regression, the desparsified LASSO faces an additional\\nchallenge: the Stambaugh bias arising from nonstationary regressors. To restore\\nthe standard inferential procedure, we propose a novel estimator called\\nIVX-desparsified LASSO (XDlasso). XDlasso eliminates the shrinkage bias and the\\nStambaugh bias simultaneously and does not require prior knowledge about the\\nidentities of nonstationary and stationary regressors. We establish the\\nasymptotic properties of XDlasso for hypothesis testing, and our theoretical\\nfindings are supported by Monte Carlo simulations. Applying our method to\\nreal-world applications from the FRED-MD database -- which includes a rich set\\nof control variables -- we investigate two important empirical questions: (i)\\nthe predictability of the U.S. stock returns based on the earnings-price ratio,\\nand (ii) the predictability of the U.S. inflation using the unemployment rate.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LASSO 在估计系数中引入了收缩偏差,这会对理想的渐近正态性产生不利影响,并使基于 $t$ 统计量的标准推断程序失效。经过简化的 LASSO 是解决这一问题的著名方法。在高维预测回归的背景下,简化 LASSO 面临着额外的挑战:非平稳回归因子引起的 Stambaugh 偏差。为了还原标准推断程序,我们提出了一种名为 IVX-desparsified LASSO(XDlasso)的新型估计器。XDlasso 可以同时消除收缩偏差和斯坦鲍偏差,而且不需要关于非平稳和平稳回归因子的先验知识。我们建立了 XDlasso 假设检验的渐近特性,蒙特卡罗模拟支持了我们的理论发现。将我们的方法应用到 FRED-MD 数据库的实际应用中--该数据库包含一组丰富的控制变量--我们研究了两个重要的经验问题:(i) 基于收益价格比的美国股票收益的可预测性,以及 (ii) 基于失业率的美国通货膨胀的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On LASSO Inference for High Dimensional Predictive Regression
LASSO introduces shrinkage bias into estimated coefficients, which can adversely affect the desirable asymptotic normality and invalidate the standard inferential procedure based on the $t$-statistic. The desparsified LASSO has emerged as a well-known remedy for this issue. In the context of high dimensional predictive regression, the desparsified LASSO faces an additional challenge: the Stambaugh bias arising from nonstationary regressors. To restore the standard inferential procedure, we propose a novel estimator called IVX-desparsified LASSO (XDlasso). XDlasso eliminates the shrinkage bias and the Stambaugh bias simultaneously and does not require prior knowledge about the identities of nonstationary and stationary regressors. We establish the asymptotic properties of XDlasso for hypothesis testing, and our theoretical findings are supported by Monte Carlo simulations. Applying our method to real-world applications from the FRED-MD database -- which includes a rich set of control variables -- we investigate two important empirical questions: (i) the predictability of the U.S. stock returns based on the earnings-price ratio, and (ii) the predictability of the U.S. inflation using the unemployment rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信