高维矩阵值时间序列的贝叶斯动态因子模型

Wei Zhang
{"title":"高维矩阵值时间序列的贝叶斯动态因子模型","authors":"Wei Zhang","doi":"arxiv-2409.08354","DOIUrl":null,"url":null,"abstract":"High-dimensional matrix-valued time series are of significant interest in\neconomics and finance, with prominent examples including cross region\nmacroeconomic panels and firms' financial data panels. We introduce a class of\nBayesian matrix dynamic factor models that utilize matrix structures to\nidentify more interpretable factor patterns and factor impacts. Our model\naccommodates time-varying volatility, adjusts for outliers, and allows\ncross-sectional correlations in the idiosyncratic components. To determine the\ndimension of the factor matrix, we employ an importance-sampling estimator\nbased on the cross-entropy method to estimate marginal likelihoods. Through a\nseries of Monte Carlo experiments, we show the properties of the factor\nestimators and the performance of the marginal likelihood estimator in\ncorrectly identifying the true dimensions of the factor matrices. Applying our\nmodel to a macroeconomic dataset and a financial dataset, we demonstrate its\nability in unveiling interesting features within matrix-valued time series.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"210 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series\",\"authors\":\"Wei Zhang\",\"doi\":\"arxiv-2409.08354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional matrix-valued time series are of significant interest in\\neconomics and finance, with prominent examples including cross region\\nmacroeconomic panels and firms' financial data panels. We introduce a class of\\nBayesian matrix dynamic factor models that utilize matrix structures to\\nidentify more interpretable factor patterns and factor impacts. Our model\\naccommodates time-varying volatility, adjusts for outliers, and allows\\ncross-sectional correlations in the idiosyncratic components. To determine the\\ndimension of the factor matrix, we employ an importance-sampling estimator\\nbased on the cross-entropy method to estimate marginal likelihoods. Through a\\nseries of Monte Carlo experiments, we show the properties of the factor\\nestimators and the performance of the marginal likelihood estimator in\\ncorrectly identifying the true dimensions of the factor matrices. Applying our\\nmodel to a macroeconomic dataset and a financial dataset, we demonstrate its\\nability in unveiling interesting features within matrix-valued time series.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"210 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高维矩阵值时间序列在经济学和金融学中备受关注,其中突出的例子包括跨地区宏观经济面板和公司财务数据面板。我们引入了一类贝叶斯矩阵动态因子模型,利用矩阵结构来识别更多可解释的因子模式和因子影响。我们的模型考虑了时变波动性,对异常值进行了调整,并允许特异性成分的跨部门相关性。为了确定因子矩阵的维度,我们采用了基于交叉熵方法的重要性取样估计器来估计边际似然。通过一系列蒙特卡罗实验,我们展示了因子估计器的特性以及边际似然估计器在错误识别因子矩阵真实维度方面的性能。将我们的模型应用于宏观经济数据集和金融数据集,我们展示了该模型在揭示矩阵值时间序列中的有趣特征方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series
High-dimensional matrix-valued time series are of significant interest in economics and finance, with prominent examples including cross region macroeconomic panels and firms' financial data panels. We introduce a class of Bayesian matrix dynamic factor models that utilize matrix structures to identify more interpretable factor patterns and factor impacts. Our model accommodates time-varying volatility, adjusts for outliers, and allows cross-sectional correlations in the idiosyncratic components. To determine the dimension of the factor matrix, we employ an importance-sampling estimator based on the cross-entropy method to estimate marginal likelihoods. Through a series of Monte Carlo experiments, we show the properties of the factor estimators and the performance of the marginal likelihood estimator in correctly identifying the true dimensions of the factor matrices. Applying our model to a macroeconomic dataset and a financial dataset, we demonstrate its ability in unveiling interesting features within matrix-valued time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信