{"title":"腹侧被盖区多巴胺到杏仁核基底外侧的投射支持可卡因自我给药的获得","authors":"Dana M. Smith , Mary M. Torregrossa","doi":"10.1016/j.neuropharm.2024.110160","DOIUrl":null,"url":null,"abstract":"<div><p>Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110160"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ventral tegmental area dopamine to basolateral amygdala projection supports acquisition of cocaine self-administration\",\"authors\":\"Dana M. Smith , Mary M. Torregrossa\",\"doi\":\"10.1016/j.neuropharm.2024.110160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.</p></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"261 \",\"pages\":\"Article 110160\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390824003290\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824003290","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The ventral tegmental area dopamine to basolateral amygdala projection supports acquisition of cocaine self-administration
Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).