{"title":"在联合主成分分析中寻求子空间共识","authors":"Lei Wang, Xin Liu, Yin Zhang","doi":"10.1007/s10957-024-02523-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop an algorithm for federated principal component analysis (PCA) with emphases on both communication efficiency and data privacy. Generally speaking, federated PCA algorithms based on direct adaptations of classic iterative methods, such as simultaneous subspace iterations, are unable to preserve data privacy, while algorithms based on variable-splitting and consensus-seeking, such as alternating direction methods of multipliers (ADMM), lack in communication-efficiency. In this work, we propose a novel consensus-seeking formulation by equalizing subspaces spanned by splitting variables instead of equalizing variables themselves, thus greatly relaxing feasibility restrictions and allowing much faster convergence. Then we develop an ADMM-like algorithm with several special features to make it practically efficient, including a low-rank multiplier formula and techniques for treating subproblems. We establish that the proposed algorithm can better protect data privacy than classic methods adapted to the federated PCA setting. We derive convergence results, including a worst-case complexity estimate, for the proposed ADMM-like algorithm in the presence of the nonlinear equality constraints. Extensive empirical results are presented to show that the new algorithm, while enhancing data privacy, requires far fewer rounds of communication than existing peer algorithms for federated PCA.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeking Consensus on Subspaces in Federated Principal Component Analysis\",\"authors\":\"Lei Wang, Xin Liu, Yin Zhang\",\"doi\":\"10.1007/s10957-024-02523-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we develop an algorithm for federated principal component analysis (PCA) with emphases on both communication efficiency and data privacy. Generally speaking, federated PCA algorithms based on direct adaptations of classic iterative methods, such as simultaneous subspace iterations, are unable to preserve data privacy, while algorithms based on variable-splitting and consensus-seeking, such as alternating direction methods of multipliers (ADMM), lack in communication-efficiency. In this work, we propose a novel consensus-seeking formulation by equalizing subspaces spanned by splitting variables instead of equalizing variables themselves, thus greatly relaxing feasibility restrictions and allowing much faster convergence. Then we develop an ADMM-like algorithm with several special features to make it practically efficient, including a low-rank multiplier formula and techniques for treating subproblems. We establish that the proposed algorithm can better protect data privacy than classic methods adapted to the federated PCA setting. We derive convergence results, including a worst-case complexity estimate, for the proposed ADMM-like algorithm in the presence of the nonlinear equality constraints. Extensive empirical results are presented to show that the new algorithm, while enhancing data privacy, requires far fewer rounds of communication than existing peer algorithms for federated PCA.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02523-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02523-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Seeking Consensus on Subspaces in Federated Principal Component Analysis
In this paper, we develop an algorithm for federated principal component analysis (PCA) with emphases on both communication efficiency and data privacy. Generally speaking, federated PCA algorithms based on direct adaptations of classic iterative methods, such as simultaneous subspace iterations, are unable to preserve data privacy, while algorithms based on variable-splitting and consensus-seeking, such as alternating direction methods of multipliers (ADMM), lack in communication-efficiency. In this work, we propose a novel consensus-seeking formulation by equalizing subspaces spanned by splitting variables instead of equalizing variables themselves, thus greatly relaxing feasibility restrictions and allowing much faster convergence. Then we develop an ADMM-like algorithm with several special features to make it practically efficient, including a low-rank multiplier formula and techniques for treating subproblems. We establish that the proposed algorithm can better protect data privacy than classic methods adapted to the federated PCA setting. We derive convergence results, including a worst-case complexity estimate, for the proposed ADMM-like algorithm in the presence of the nonlinear equality constraints. Extensive empirical results are presented to show that the new algorithm, while enhancing data privacy, requires far fewer rounds of communication than existing peer algorithms for federated PCA.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.