{"title":"带分数拉普拉卡矩的双线性优化控制问题的自适应有限元逼近","authors":"Fangyuan Wang, Qiming Wang, Zhaojie Zhou","doi":"10.1007/s10092-024-00611-2","DOIUrl":null,"url":null,"abstract":"<p>We investigate the application of a posteriori error estimate to a fractional optimal control problem with pointwise control constraints. Specifically, we address a problem in which the state equation is formulated as an integral form of the fractional Laplacian equation, with the control variable embedded within the state equation as a coefficient. We propose two distinct finite element discretization approaches for an optimal control problem. The first approach employs a fully discrete scheme where the control variable is discretized using piecewise constant functions. The second approach, a semi-discrete scheme, does not discretize the control variable. Using the first-order optimality condition, the second-order optimality condition, and a solution regularity analysis for the optimal control problem, we devise a posteriori error estimates. Based on the established error estimates framework, an adaptive refinement strategy is developed to help achieve the optimal convergence rate. Numerical experiments are given to illustrate the theoretical findings.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian\",\"authors\":\"Fangyuan Wang, Qiming Wang, Zhaojie Zhou\",\"doi\":\"10.1007/s10092-024-00611-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the application of a posteriori error estimate to a fractional optimal control problem with pointwise control constraints. Specifically, we address a problem in which the state equation is formulated as an integral form of the fractional Laplacian equation, with the control variable embedded within the state equation as a coefficient. We propose two distinct finite element discretization approaches for an optimal control problem. The first approach employs a fully discrete scheme where the control variable is discretized using piecewise constant functions. The second approach, a semi-discrete scheme, does not discretize the control variable. Using the first-order optimality condition, the second-order optimality condition, and a solution regularity analysis for the optimal control problem, we devise a posteriori error estimates. Based on the established error estimates framework, an adaptive refinement strategy is developed to help achieve the optimal convergence rate. Numerical experiments are given to illustrate the theoretical findings.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00611-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00611-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian
We investigate the application of a posteriori error estimate to a fractional optimal control problem with pointwise control constraints. Specifically, we address a problem in which the state equation is formulated as an integral form of the fractional Laplacian equation, with the control variable embedded within the state equation as a coefficient. We propose two distinct finite element discretization approaches for an optimal control problem. The first approach employs a fully discrete scheme where the control variable is discretized using piecewise constant functions. The second approach, a semi-discrete scheme, does not discretize the control variable. Using the first-order optimality condition, the second-order optimality condition, and a solution regularity analysis for the optimal control problem, we devise a posteriori error estimates. Based on the established error estimates framework, an adaptive refinement strategy is developed to help achieve the optimal convergence rate. Numerical experiments are given to illustrate the theoretical findings.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.