非发散形式奇异或退化抛物方程的哈纳克不等式

Sungwon Cho, Junyuan Fang, Tuoc Phan
{"title":"非发散形式奇异或退化抛物方程的哈纳克不等式","authors":"Sungwon Cho, Junyuan Fang, Tuoc Phan","doi":"arxiv-2409.09437","DOIUrl":null,"url":null,"abstract":"This paper studies a class of linear parabolic equations in non-divergence\nform in which the leading coefficients are measurable and they can be singular\nor degenerate as a weight belonging to the $A_{1+\\frac{1}{n}}$ class of\nMuckenhoupt weights. Krylov-Safonov Harnack inequality for solutions is proved\nunder some smallness assumption on a weighted mean oscillation of the weight.\nThe novelty of the paper is an introduction of a class of generic weighted\nparabolic cylinders in which several growth lemmas are proved. A perturbation\nmethod is used and the Aleksandrov-Bakelman-Pucci type maximum principle for\nparabolic operators is crucially applied to suitable barrier functions to prove\nthe growth lemmas. As corollaries, H\\\"{o}lder regularity estimates of solutions\nwith respect to a quasi-distance, and a Liouville type theorem are obtained in\nthe paper.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnack inequality for singular or degenerate parabolic equations in non-divergence form\",\"authors\":\"Sungwon Cho, Junyuan Fang, Tuoc Phan\",\"doi\":\"arxiv-2409.09437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a class of linear parabolic equations in non-divergence\\nform in which the leading coefficients are measurable and they can be singular\\nor degenerate as a weight belonging to the $A_{1+\\\\frac{1}{n}}$ class of\\nMuckenhoupt weights. Krylov-Safonov Harnack inequality for solutions is proved\\nunder some smallness assumption on a weighted mean oscillation of the weight.\\nThe novelty of the paper is an introduction of a class of generic weighted\\nparabolic cylinders in which several growth lemmas are proved. A perturbation\\nmethod is used and the Aleksandrov-Bakelman-Pucci type maximum principle for\\nparabolic operators is crucially applied to suitable barrier functions to prove\\nthe growth lemmas. As corollaries, H\\\\\\\"{o}lder regularity estimates of solutions\\nwith respect to a quasi-distance, and a Liouville type theorem are obtained in\\nthe paper.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类非发散形式的线性抛物方程,在这类方程中,前导系数是可测的,它们可以是奇异的,也可以退化为属于 $A_{1+\frac{1}{n}}$ 类穆肯霍普特权重的权重。本文的新颖之处在于引入了一类通用加权抛物柱面,并在其中证明了若干增长定理。本文使用了摄动法,并将抛物线算子的 Aleksandrov-Bakelman-Pucci 型最大值原理应用于合适的障碍函数,从而证明了增长定理。作为推论,本文得到了关于准距离的解的 H\"{o}lder 正则性估计和 Liouville 型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnack inequality for singular or degenerate parabolic equations in non-divergence form
This paper studies a class of linear parabolic equations in non-divergence form in which the leading coefficients are measurable and they can be singular or degenerate as a weight belonging to the $A_{1+\frac{1}{n}}$ class of Muckenhoupt weights. Krylov-Safonov Harnack inequality for solutions is proved under some smallness assumption on a weighted mean oscillation of the weight. The novelty of the paper is an introduction of a class of generic weighted parabolic cylinders in which several growth lemmas are proved. A perturbation method is used and the Aleksandrov-Bakelman-Pucci type maximum principle for parabolic operators is crucially applied to suitable barrier functions to prove the growth lemmas. As corollaries, H\"{o}lder regularity estimates of solutions with respect to a quasi-distance, and a Liouville type theorem are obtained in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信