{"title":"稳定流体不粘性极限中的小尺度","authors":"Yan Guo, Zhuolun Yang","doi":"arxiv-2409.09604","DOIUrl":null,"url":null,"abstract":"In this article, we study the 2D incompressible steady Navier-Stokes equation\nin a channel $(-L,0)\\times(-1,1)$ with the no-slip boundary condition on $\\{Y =\n\\pm 1\\}$, and consider the inviscid limit $\\varepsilon \\to 0$. In the special\ncase of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes\nsolution for $\\varepsilon \\ll1$, $$\\left\\{ \\begin{aligned} &u^\\varepsilon \\sim\nu_e + u_p + O(\\sqrt{\\varepsilon}),\\\\ &v^\\varepsilon \\sim h(Y)\n\\exp\\{Xu_e(Y)/\\varepsilon\\} + O(\\sqrt{\\varepsilon}), \\end{aligned}\\right. $$\nwhere $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an\narbitrary smooth, compactly-supported function with small magnitude. While the\nclassical Prandtl boundary layer $u_p$ exhibits a small scale of order\n$\\sqrt{\\varepsilon}$ in $Y$ near $Y = \\pm 1$, the profile we construct reveals\nan $\\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small scales in inviscid limits of steady fluids\",\"authors\":\"Yan Guo, Zhuolun Yang\",\"doi\":\"arxiv-2409.09604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the 2D incompressible steady Navier-Stokes equation\\nin a channel $(-L,0)\\\\times(-1,1)$ with the no-slip boundary condition on $\\\\{Y =\\n\\\\pm 1\\\\}$, and consider the inviscid limit $\\\\varepsilon \\\\to 0$. In the special\\ncase of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes\\nsolution for $\\\\varepsilon \\\\ll1$, $$\\\\left\\\\{ \\\\begin{aligned} &u^\\\\varepsilon \\\\sim\\nu_e + u_p + O(\\\\sqrt{\\\\varepsilon}),\\\\\\\\ &v^\\\\varepsilon \\\\sim h(Y)\\n\\\\exp\\\\{Xu_e(Y)/\\\\varepsilon\\\\} + O(\\\\sqrt{\\\\varepsilon}), \\\\end{aligned}\\\\right. $$\\nwhere $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an\\narbitrary smooth, compactly-supported function with small magnitude. While the\\nclassical Prandtl boundary layer $u_p$ exhibits a small scale of order\\n$\\\\sqrt{\\\\varepsilon}$ in $Y$ near $Y = \\\\pm 1$, the profile we construct reveals\\nan $\\\\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we study the 2D incompressible steady Navier-Stokes equation
in a channel $(-L,0)\times(-1,1)$ with the no-slip boundary condition on $\{Y =
\pm 1\}$, and consider the inviscid limit $\varepsilon \to 0$. In the special
case of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes
solution for $\varepsilon \ll1$, $$\left\{ \begin{aligned} &u^\varepsilon \sim
u_e + u_p + O(\sqrt{\varepsilon}),\\ &v^\varepsilon \sim h(Y)
\exp\{Xu_e(Y)/\varepsilon\} + O(\sqrt{\varepsilon}), \end{aligned}\right. $$
where $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an
arbitrary smooth, compactly-supported function with small magnitude. While the
classical Prandtl boundary layer $u_p$ exhibits a small scale of order
$\sqrt{\varepsilon}$ in $Y$ near $Y = \pm 1$, the profile we construct reveals
an $\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.