粗糙平面集上消失的无发散向量场的近似值

Giacomo Del Nin, Bian Wu
{"title":"粗糙平面集上消失的无发散向量场的近似值","authors":"Giacomo Del Nin, Bian Wu","doi":"arxiv-2409.09880","DOIUrl":null,"url":null,"abstract":"Given any divergence-free vector field of Sobolev class $W^{m,p}_0(\\Omega)$\nin bounded open subset $\\Omega \\subset \\mathbb{R}^2$, we are interested in\napproximating it in $W^{m,p}$ with divergence-free smooth vector fields\ncompactly supported in $\\Omega$. We show that this approximation property holds\nin the following cases. For $p>2$, this holds given that $\\partial \\Omega$ has\nzero Lebesgue measure (a weaker but more technical condition is sufficient);\nFor $p \\leq 2$, this holds if $\\Omega^c$ can be decomposed into finitely many\ndisjoint closed set, each of which is connected or $d$-Ahlfors regular for some\n$d\\in[0,2]$. This has links to the uniqueness of weak solutions to the Stokes\nequation in $\\Omega$. For H\\\"older spaces, we prove this property in general\nbounded domains.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of divergence-free vector fields vanishing on rough planar sets\",\"authors\":\"Giacomo Del Nin, Bian Wu\",\"doi\":\"arxiv-2409.09880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any divergence-free vector field of Sobolev class $W^{m,p}_0(\\\\Omega)$\\nin bounded open subset $\\\\Omega \\\\subset \\\\mathbb{R}^2$, we are interested in\\napproximating it in $W^{m,p}$ with divergence-free smooth vector fields\\ncompactly supported in $\\\\Omega$. We show that this approximation property holds\\nin the following cases. For $p>2$, this holds given that $\\\\partial \\\\Omega$ has\\nzero Lebesgue measure (a weaker but more technical condition is sufficient);\\nFor $p \\\\leq 2$, this holds if $\\\\Omega^c$ can be decomposed into finitely many\\ndisjoint closed set, each of which is connected or $d$-Ahlfors regular for some\\n$d\\\\in[0,2]$. This has links to the uniqueness of weak solutions to the Stokes\\nequation in $\\\\Omega$. For H\\\\\\\"older spaces, we prove this property in general\\nbounded domains.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定在有界开放子集 $\Omega \子集 \mathbb{R}^2$中任何索波列夫类 $W^{m,p}_0(\Omega)$ 的无发散向量场,我们感兴趣的是在 $W^{m,p}$ 中用紧密支撑在 $\Omega$ 中的无发散光滑向量场来近似它。我们将证明这一近似性质在以下情况下成立。对于$p>2$,只要$\partial \Omega$的Lebesgue度量为零(一个较弱但技术性更强的条件就足够了),这个近似性质就成立;对于$p (leq 2$),如果$\Omega^c$可以分解为有限多个二交闭集,其中每个都是连通的,或者对于[0,2]$中的某个$d$来说是$d$-Ahlfors正则的,这个近似性质就成立。这与$\Omega$中斯托克方程弱解的唯一性有关。对于 H\"older 空间,我们在一般有界域中证明了这一性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of divergence-free vector fields vanishing on rough planar sets
Given any divergence-free vector field of Sobolev class $W^{m,p}_0(\Omega)$ in bounded open subset $\Omega \subset \mathbb{R}^2$, we are interested in approximating it in $W^{m,p}$ with divergence-free smooth vector fields compactly supported in $\Omega$. We show that this approximation property holds in the following cases. For $p>2$, this holds given that $\partial \Omega$ has zero Lebesgue measure (a weaker but more technical condition is sufficient); For $p \leq 2$, this holds if $\Omega^c$ can be decomposed into finitely many disjoint closed set, each of which is connected or $d$-Ahlfors regular for some $d\in[0,2]$. This has links to the uniqueness of weak solutions to the Stokes equation in $\Omega$. For H\"older spaces, we prove this property in general bounded domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信