Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva
{"title":"一类具有诺伊曼条件的非局部演化方程的上半连续性","authors":"Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva","doi":"arxiv-2409.10065","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following nonlocal autonomous evolution\nequation in a bounded domain $\\Omega$ in $\\mathbb{R}^N$ \\[ \\partial_t u(x,t) =-\nh(x)u(x,t) + g \\Big(\\int_{\\Omega} J(x,y)u(y,t)dy \\Big) +f(x,u(x,t)) \\] where\n$h\\in W^{1,\\infty}(\\Omega)$, $g: \\mathbb{R} \\to \\mathbb{R}$ and\n$f:\\mathbb{R}^N\\times\\mathbb{R} \\to \\mathbb{R}$ are continuously differentiable\nfunction, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any\n$x,y\\in\\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we\nstudy the asymptotic dynamics of the initial value problem associated to this\nequation in a suitable phase spaces. More precisely, we prove the existence,\nand upper semicontinuity of compact global attractors with respect to kernel\n$J$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition\",\"authors\":\"Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva\",\"doi\":\"arxiv-2409.10065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the following nonlocal autonomous evolution\\nequation in a bounded domain $\\\\Omega$ in $\\\\mathbb{R}^N$ \\\\[ \\\\partial_t u(x,t) =-\\nh(x)u(x,t) + g \\\\Big(\\\\int_{\\\\Omega} J(x,y)u(y,t)dy \\\\Big) +f(x,u(x,t)) \\\\] where\\n$h\\\\in W^{1,\\\\infty}(\\\\Omega)$, $g: \\\\mathbb{R} \\\\to \\\\mathbb{R}$ and\\n$f:\\\\mathbb{R}^N\\\\times\\\\mathbb{R} \\\\to \\\\mathbb{R}$ are continuously differentiable\\nfunction, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any\\n$x,y\\\\in\\\\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we\\nstudy the asymptotic dynamics of the initial value problem associated to this\\nequation in a suitable phase spaces. More precisely, we prove the existence,\\nand upper semicontinuity of compact global attractors with respect to kernel\\n$J$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition
In this paper we consider the following nonlocal autonomous evolution
equation in a bounded domain $\Omega$ in $\mathbb{R}^N$ \[ \partial_t u(x,t) =-
h(x)u(x,t) + g \Big(\int_{\Omega} J(x,y)u(y,t)dy \Big) +f(x,u(x,t)) \] where
$h\in W^{1,\infty}(\Omega)$, $g: \mathbb{R} \to \mathbb{R}$ and
$f:\mathbb{R}^N\times\mathbb{R} \to \mathbb{R}$ are continuously differentiable
function, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any
$x,y\in\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we
study the asymptotic dynamics of the initial value problem associated to this
equation in a suitable phase spaces. More precisely, we prove the existence,
and upper semicontinuity of compact global attractors with respect to kernel
$J$.