具有次二次奇异性的薛定谔算子的域特性分析

Giorgio Metafune, Motohiro Sobajima
{"title":"具有次二次奇异性的薛定谔算子的域特性分析","authors":"Giorgio Metafune, Motohiro Sobajima","doi":"arxiv-2409.09917","DOIUrl":null,"url":null,"abstract":"We characterize the domain of the Schr\\\"odinger operators\n$S=-\\Delta+c|x|^{-\\alpha}$ in $L^p(\\mathbb{R}^N)$, with $0<\\alpha<2$ and\n$c\\in\\mathbb{R}$. When $\\alpha p< N$, the domain characterization is\nessentially known and can be proved using different tools, for instance kernel\nestimates and potentials in the Kato class or in the reverse H\\\"older class.\nHowever,the other cases seem not to be known, so far.In this paper, we give the\nexplicit description of the domain of $S$ for all range of parameters\n$p,\\alpha$ and $c$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain characterization for Schrödinger operators with sub-quadratic singularity\",\"authors\":\"Giorgio Metafune, Motohiro Sobajima\",\"doi\":\"arxiv-2409.09917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the domain of the Schr\\\\\\\"odinger operators\\n$S=-\\\\Delta+c|x|^{-\\\\alpha}$ in $L^p(\\\\mathbb{R}^N)$, with $0<\\\\alpha<2$ and\\n$c\\\\in\\\\mathbb{R}$. When $\\\\alpha p< N$, the domain characterization is\\nessentially known and can be proved using different tools, for instance kernel\\nestimates and potentials in the Kato class or in the reverse H\\\\\\\"older class.\\nHowever,the other cases seem not to be known, so far.In this paper, we give the\\nexplicit description of the domain of $S$ for all range of parameters\\n$p,\\\\alpha$ and $c$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了$L^p(\mathbb{R}^N)$中的薛定谔算子$S=-\Delta+c|x|^{-\alpha}$的域,其中$0<\alpha<2$和$c\in\mathbb{R}$。当$\alpha p< N$时,域的特征描述基本上是已知的,并且可以用不同的工具证明,例如加藤类或反向 H\"older 类中的核估计和势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain characterization for Schrödinger operators with sub-quadratic singularity
We characterize the domain of the Schr\"odinger operators $S=-\Delta+c|x|^{-\alpha}$ in $L^p(\mathbb{R}^N)$, with $0<\alpha<2$ and $c\in\mathbb{R}$. When $\alpha p< N$, the domain characterization is essentially known and can be proved using different tools, for instance kernel estimates and potentials in the Kato class or in the reverse H\"older class. However,the other cases seem not to be known, so far.In this paper, we give the explicit description of the domain of $S$ for all range of parameters $p,\alpha$ and $c$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信