{"title":"具有次二次奇异性的薛定谔算子的域特性分析","authors":"Giorgio Metafune, Motohiro Sobajima","doi":"arxiv-2409.09917","DOIUrl":null,"url":null,"abstract":"We characterize the domain of the Schr\\\"odinger operators\n$S=-\\Delta+c|x|^{-\\alpha}$ in $L^p(\\mathbb{R}^N)$, with $0<\\alpha<2$ and\n$c\\in\\mathbb{R}$. When $\\alpha p< N$, the domain characterization is\nessentially known and can be proved using different tools, for instance kernel\nestimates and potentials in the Kato class or in the reverse H\\\"older class.\nHowever,the other cases seem not to be known, so far.In this paper, we give the\nexplicit description of the domain of $S$ for all range of parameters\n$p,\\alpha$ and $c$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain characterization for Schrödinger operators with sub-quadratic singularity\",\"authors\":\"Giorgio Metafune, Motohiro Sobajima\",\"doi\":\"arxiv-2409.09917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the domain of the Schr\\\\\\\"odinger operators\\n$S=-\\\\Delta+c|x|^{-\\\\alpha}$ in $L^p(\\\\mathbb{R}^N)$, with $0<\\\\alpha<2$ and\\n$c\\\\in\\\\mathbb{R}$. When $\\\\alpha p< N$, the domain characterization is\\nessentially known and can be proved using different tools, for instance kernel\\nestimates and potentials in the Kato class or in the reverse H\\\\\\\"older class.\\nHowever,the other cases seem not to be known, so far.In this paper, we give the\\nexplicit description of the domain of $S$ for all range of parameters\\n$p,\\\\alpha$ and $c$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Domain characterization for Schrödinger operators with sub-quadratic singularity
We characterize the domain of the Schr\"odinger operators
$S=-\Delta+c|x|^{-\alpha}$ in $L^p(\mathbb{R}^N)$, with $0<\alpha<2$ and
$c\in\mathbb{R}$. When $\alpha p< N$, the domain characterization is
essentially known and can be proved using different tools, for instance kernel
estimates and potentials in the Kato class or in the reverse H\"older class.
However,the other cases seem not to be known, so far.In this paper, we give the
explicit description of the domain of $S$ for all range of parameters
$p,\alpha$ and $c$.