{"title":"网格图上的分数对数薛定谔方程","authors":"Lidan Wang","doi":"arxiv-2409.09976","DOIUrl":null,"url":null,"abstract":"In this paper, we study the fractional logarithmic Schr\\\"{o}dinger equation\n$$ (-\\Delta)^{s} u+h(x) u=u \\log u^{2} $$ on lattice graphs $\\mathbb{Z}^d$,\nwhere $s\\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the\nexistence of ground state solution by mountain pass theorem and Lions lemma. If\n$h(x)$ is a coercive potential, we show the existence of ground state\nsign-changing solutions by the method of Nehari manifold.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional logarithmic Schrödinger equations on lattice graphs\",\"authors\":\"Lidan Wang\",\"doi\":\"arxiv-2409.09976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the fractional logarithmic Schr\\\\\\\"{o}dinger equation\\n$$ (-\\\\Delta)^{s} u+h(x) u=u \\\\log u^{2} $$ on lattice graphs $\\\\mathbb{Z}^d$,\\nwhere $s\\\\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the\\nexistence of ground state solution by mountain pass theorem and Lions lemma. If\\n$h(x)$ is a coercive potential, we show the existence of ground state\\nsign-changing solutions by the method of Nehari manifold.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractional logarithmic Schrödinger equations on lattice graphs
In this paper, we study the fractional logarithmic Schr\"{o}dinger equation
$$ (-\Delta)^{s} u+h(x) u=u \log u^{2} $$ on lattice graphs $\mathbb{Z}^d$,
where $s\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the
existence of ground state solution by mountain pass theorem and Lions lemma. If
$h(x)$ is a coercive potential, we show the existence of ground state
sign-changing solutions by the method of Nehari manifold.