网格图上的分数对数薛定谔方程

Lidan Wang
{"title":"网格图上的分数对数薛定谔方程","authors":"Lidan Wang","doi":"arxiv-2409.09976","DOIUrl":null,"url":null,"abstract":"In this paper, we study the fractional logarithmic Schr\\\"{o}dinger equation\n$$ (-\\Delta)^{s} u+h(x) u=u \\log u^{2} $$ on lattice graphs $\\mathbb{Z}^d$,\nwhere $s\\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the\nexistence of ground state solution by mountain pass theorem and Lions lemma. If\n$h(x)$ is a coercive potential, we show the existence of ground state\nsign-changing solutions by the method of Nehari manifold.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional logarithmic Schrödinger equations on lattice graphs\",\"authors\":\"Lidan Wang\",\"doi\":\"arxiv-2409.09976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the fractional logarithmic Schr\\\\\\\"{o}dinger equation\\n$$ (-\\\\Delta)^{s} u+h(x) u=u \\\\log u^{2} $$ on lattice graphs $\\\\mathbb{Z}^d$,\\nwhere $s\\\\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the\\nexistence of ground state solution by mountain pass theorem and Lions lemma. If\\n$h(x)$ is a coercive potential, we show the existence of ground state\\nsign-changing solutions by the method of Nehari manifold.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了网格图 $\mathbb{Z}^d$ 上的分数对数薛定谔方程 $$ (-\Delta)^{s} u+h(x) u=u \log u^{2} $$,其中 $s\in (0,1)$.如果$h(x)$是一个有界周期势,我们通过山口定理和Lions Lemma证明了基态解的存在性。如果$h(x)$ 是胁迫势,我们用 Nehari 流形的方法证明了基态变化解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional logarithmic Schrödinger equations on lattice graphs
In this paper, we study the fractional logarithmic Schr\"{o}dinger equation $$ (-\Delta)^{s} u+h(x) u=u \log u^{2} $$ on lattice graphs $\mathbb{Z}^d$, where $s\in (0,1)$. If $h(x)$ is a bounded periodic potential, we prove the existence of ground state solution by mountain pass theorem and Lions lemma. If $h(x)$ is a coercive potential, we show the existence of ground state sign-changing solutions by the method of Nehari manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信