图上卡兹丹-瓦纳型方程的存在性结果

Pengxiu Yu
{"title":"图上卡兹丹-瓦纳型方程的存在性结果","authors":"Pengxiu Yu","doi":"arxiv-2409.10181","DOIUrl":null,"url":null,"abstract":"In this paper, motivated by the work of Huang-Lin-Yau (Commun. Math. Phys.\n2020), Sun-Wang (Adv. Math. 2022) and Li-Sun-Yang (Calc. Var. Partial\nDifferential Equations 2024), we investigate the existence of Kazdan-Warner\ntype equations on a finite connected graph, based on the theory of Brouwer\ndegree. Specifically, we consider the equation \\begin{equation*} -\\Delta\nu=h(x)f(u)-c, \\end{equation*} where $h$ is a real-valued function defined on\nthe vertex set $V$, $c\\in\\mathbb{R}$ and \\begin{equation*} f(u)=\n\\left(1-\\displaystyle\\frac{1}{1+u^{2n}}\\right)e^u \\end{equation*} with $n\\in\n\\mathbb{N}^*$. Different from the previous studies, the main difficulty in this\npaper is to show that the corresponding equation has only three constant\nsolutions, based on delicate analysis and the connectivity of graphs, which\nhave not been extensively explored in previous literature.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for Kazdan-Warner type equations on graphs\",\"authors\":\"Pengxiu Yu\",\"doi\":\"arxiv-2409.10181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motivated by the work of Huang-Lin-Yau (Commun. Math. Phys.\\n2020), Sun-Wang (Adv. Math. 2022) and Li-Sun-Yang (Calc. Var. Partial\\nDifferential Equations 2024), we investigate the existence of Kazdan-Warner\\ntype equations on a finite connected graph, based on the theory of Brouwer\\ndegree. Specifically, we consider the equation \\\\begin{equation*} -\\\\Delta\\nu=h(x)f(u)-c, \\\\end{equation*} where $h$ is a real-valued function defined on\\nthe vertex set $V$, $c\\\\in\\\\mathbb{R}$ and \\\\begin{equation*} f(u)=\\n\\\\left(1-\\\\displaystyle\\\\frac{1}{1+u^{2n}}\\\\right)e^u \\\\end{equation*} with $n\\\\in\\n\\\\mathbb{N}^*$. Different from the previous studies, the main difficulty in this\\npaper is to show that the corresponding equation has only three constant\\nsolutions, based on delicate analysis and the connectivity of graphs, which\\nhave not been extensively explored in previous literature.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文受 Huang-Lin-Yau (Commun.Math.Phys.2020)、Sun-Wang (Adv. Math. 2022) 和 Li-Sun-Yang (Calc. Var. PartialDifferential Equations 2024) 的研究启发,基于 Brouwerdegree 理论,研究有限连通图上 Kazdan-Warner 型方程的存在性。具体来说,我们考虑方程-\Deltau=h(x)f(u)-c, \end{equation*} 其中 $h$ 是定义在顶点集 $V$ 上的实值函数、f(u)= 左(1-\displaystyle\frac{1}{1+u^{2n}}\右)e^u \end{equation*}$n\in\mathbb{N}^*$。与以往的研究不同,本文的主要难点在于基于精细分析和图的连通性,证明相应方程只有三个常解,而这在以往的文献中并没有得到广泛的探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for Kazdan-Warner type equations on graphs
In this paper, motivated by the work of Huang-Lin-Yau (Commun. Math. Phys. 2020), Sun-Wang (Adv. Math. 2022) and Li-Sun-Yang (Calc. Var. Partial Differential Equations 2024), we investigate the existence of Kazdan-Warner type equations on a finite connected graph, based on the theory of Brouwer degree. Specifically, we consider the equation \begin{equation*} -\Delta u=h(x)f(u)-c, \end{equation*} where $h$ is a real-valued function defined on the vertex set $V$, $c\in\mathbb{R}$ and \begin{equation*} f(u)= \left(1-\displaystyle\frac{1}{1+u^{2n}}\right)e^u \end{equation*} with $n\in \mathbb{N}^*$. Different from the previous studies, the main difficulty in this paper is to show that the corresponding equation has only three constant solutions, based on delicate analysis and the connectivity of graphs, which have not been extensively explored in previous literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信