通过全局分岔法实现具有一般非线性的薛定谔方程在有界域中的归一化解

Wei Ji
{"title":"通过全局分岔法实现具有一般非线性的薛定谔方程在有界域中的归一化解","authors":"Wei Ji","doi":"arxiv-2409.10299","DOIUrl":null,"url":null,"abstract":"We obtain the existence, nonexistence and multiplicity of positive solutions\nwith prescribed mass for nonlinear Schr\\\"{o}dinger equations in bounded domains\nvia a global bifurcation approach. The nonlinearities in this paper can be mass\nsupercritical, critical, subcritical or some mixes of these cases, and the\nequation can be autonomous or non-autonomous. This generalizes a result in\nNoris, Tavares and Verzini [\\emph{Anal. PDE}, 7 (8) (2014) 1807-1838], where\nthe equation is autonomous with homogeneous nonlinearities. Besides, we have\nproven some orbital stability or instability results.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions to Schrödinger Equations with General Nonlinearities in Bounded Domains via a Global Bifurcation Approach\",\"authors\":\"Wei Ji\",\"doi\":\"arxiv-2409.10299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the existence, nonexistence and multiplicity of positive solutions\\nwith prescribed mass for nonlinear Schr\\\\\\\"{o}dinger equations in bounded domains\\nvia a global bifurcation approach. The nonlinearities in this paper can be mass\\nsupercritical, critical, subcritical or some mixes of these cases, and the\\nequation can be autonomous or non-autonomous. This generalizes a result in\\nNoris, Tavares and Verzini [\\\\emph{Anal. PDE}, 7 (8) (2014) 1807-1838], where\\nthe equation is autonomous with homogeneous nonlinearities. Besides, we have\\nproven some orbital stability or instability results.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过全局分岔方法,我们得到了非线性薛定谔方程在有界域中具有规定质量的正解的存在性、不存在性和多重性。本文中的非线性可以是质量超临界、临界、亚临界或这些情况的混合,方程可以是自洽的或非自洽的。这概括了Noris、Tavares和Verzini [\emph{Anal.PDE},7 (8) (2014) 1807-1838]中的一个结果,其中方程是具有同质非线性的自治方程。此外,我们还证明了一些轨道稳定性或不稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized Solutions to Schrödinger Equations with General Nonlinearities in Bounded Domains via a Global Bifurcation Approach
We obtain the existence, nonexistence and multiplicity of positive solutions with prescribed mass for nonlinear Schr\"{o}dinger equations in bounded domains via a global bifurcation approach. The nonlinearities in this paper can be mass supercritical, critical, subcritical or some mixes of these cases, and the equation can be autonomous or non-autonomous. This generalizes a result in Noris, Tavares and Verzini [\emph{Anal. PDE}, 7 (8) (2014) 1807-1838], where the equation is autonomous with homogeneous nonlinearities. Besides, we have proven some orbital stability or instability results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信