广义哈特里方程的势散射

Carlos M. Guzmán, Cristian Loli, Luis P. Yapu
{"title":"广义哈特里方程的势散射","authors":"Carlos M. Guzmán, Cristian Loli, Luis P. Yapu","doi":"arxiv-2409.10769","DOIUrl":null,"url":null,"abstract":"We consider the focusing generalized Hartree equation in $H^1(\\R^3)$ with a\npotential, \\begin{equation*} iu_t + \\Delta u - V(x)u + (I_\\gamma \\ast |u|^p\n)|u|^{p-2} u=0, \\end{equation*} where $I_\\gamma = \\frac{1}{|x|^{3-\\gamma}}$, $p\n\\geq 2$ and $\\gamma < 3$. In this paper, we prove scattering for the\ngeneralized Hartree equation with a potential in the intercritical case\nassuming radial initial data. The novelty of our approach lies in the use of a\ngeneral mass-potential condition, incorporating the potential V, which extends\nthe standard mass-energy framework. To this end, we employ a simplified method\ninspired by Dodson and Murphy \\cite{Dod-Mur}, based on Tao's scattering\ncriteria and Morawetz estimates. This approach provides a more straightforward\nproof of scattering compared to the traditional\nconcentration-compactness/rigidity method of Kenig and Merle \\cite{KENIG}.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering for the generalized Hartree equation with a potential\",\"authors\":\"Carlos M. Guzmán, Cristian Loli, Luis P. Yapu\",\"doi\":\"arxiv-2409.10769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the focusing generalized Hartree equation in $H^1(\\\\R^3)$ with a\\npotential, \\\\begin{equation*} iu_t + \\\\Delta u - V(x)u + (I_\\\\gamma \\\\ast |u|^p\\n)|u|^{p-2} u=0, \\\\end{equation*} where $I_\\\\gamma = \\\\frac{1}{|x|^{3-\\\\gamma}}$, $p\\n\\\\geq 2$ and $\\\\gamma < 3$. In this paper, we prove scattering for the\\ngeneralized Hartree equation with a potential in the intercritical case\\nassuming radial initial data. The novelty of our approach lies in the use of a\\ngeneral mass-potential condition, incorporating the potential V, which extends\\nthe standard mass-energy framework. To this end, we employ a simplified method\\ninspired by Dodson and Murphy \\\\cite{Dod-Mur}, based on Tao's scattering\\ncriteria and Morawetz estimates. This approach provides a more straightforward\\nproof of scattering compared to the traditional\\nconcentration-compactness/rigidity method of Kenig and Merle \\\\cite{KENIG}.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑$H^1(\R^3)$中的聚焦广义哈特里方程,其势为 iu_t + \Delta u - V(x)u + (I_\gamma \ast |u|^p)|u|^{p-2} u=0、\end{equation*} 其中 $I_\gamma = \frac{1}{|x|^{3-\gamma}}$, $p\geq 2$ and $\gamma < 3$.在本文中,我们证明了广义哈特里方程在假定径向初始数据的临界状态下的散射。我们方法的新颖之处在于使用了一般质量-势条件,其中包含了势 V,从而扩展了标准质量-能量框架。为此,我们在陶氏散射标准和莫拉维兹估计的基础上,采用了受多德森和墨菲启发的简化方法。与凯尼格和默尔的传统浓度-紧凑性/刚性方法相比,这种方法提供了更直接的散射证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering for the generalized Hartree equation with a potential
We consider the focusing generalized Hartree equation in $H^1(\R^3)$ with a potential, \begin{equation*} iu_t + \Delta u - V(x)u + (I_\gamma \ast |u|^p )|u|^{p-2} u=0, \end{equation*} where $I_\gamma = \frac{1}{|x|^{3-\gamma}}$, $p \geq 2$ and $\gamma < 3$. In this paper, we prove scattering for the generalized Hartree equation with a potential in the intercritical case assuming radial initial data. The novelty of our approach lies in the use of a general mass-potential condition, incorporating the potential V, which extends the standard mass-energy framework. To this end, we employ a simplified method inspired by Dodson and Murphy \cite{Dod-Mur}, based on Tao's scattering criteria and Morawetz estimates. This approach provides a more straightforward proof of scattering compared to the traditional concentration-compactness/rigidity method of Kenig and Merle \cite{KENIG}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信