{"title":"关于移动平面法径向对称性的说明","authors":"Shu-Yu Hsu","doi":"arxiv-2409.10834","DOIUrl":null,"url":null,"abstract":"Let $\\Omega\\subset\\mathbb{R}^n$, $n\\ge 2$, be a bounded connected $C^2$\ndomain. For any unit vector $\\nu\\in\\mathbb{R}^n$, let\n$T_{\\lambda}^{\\nu}=\\{x\\in\\mathbb{R}^n:x\\cdot\\nu=\\lambda\\}$,\n$\\Sigma_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x\\cdot\\nu<\\lambda\\}$ and\n$x^{\\ast}=x-2(x\\cdot\\nu-\\lambda)\\nu$ be the reflection of a point\n$x\\in\\mathbb{R}^n$ about the plane $T_{\\lambda}^{\\nu}$. Let\n$\\widetilde{\\Sigma}_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x^{\\ast}\\in\\Sigma_{\\lambda}^{\\nu}\\}$\nand $u\\in C^2(\\overline{\\Omega})$. Suppose for any unit vector\n$\\nu\\in\\mathbb{R}^n$, there exists a constant $\\lambda_{\\nu}\\in\\mathbb{R}$ such\nthat $\\Omega$ is symmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and $u$ is\nsymmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and satisfies\n(i)$\\,\\frac{\\partial u}{\\partial\\nu}(x)>0\\quad\\forall x\\in\n\\Sigma_{\\lambda_{\\nu}}^{\\nu}$ and (ii)$\\,\\frac{\\partial\nu}{\\partial\\nu}(x)<0\\quad\\forall x\\in\n\\widetilde{\\Sigma}_{\\lambda_{\\nu}}^{\\nu}$. We will give a simple proof that $u$\nis radially symmetric about some point $x_0\\in\\Omega$ and $\\Omega$ is a ball\nwith center at $x_0$. Similar result holds for the domain $\\mathbb{R}^n$ and\nfunction $u\\in C^2(\\mathbb{R}^n)$ satisfying similar monotonicity and symmetry\nconditions. We also extend this result under weaker hypothesis on the function\n$u$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the radially symmetry in the moving plane method\",\"authors\":\"Shu-Yu Hsu\",\"doi\":\"arxiv-2409.10834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Omega\\\\subset\\\\mathbb{R}^n$, $n\\\\ge 2$, be a bounded connected $C^2$\\ndomain. For any unit vector $\\\\nu\\\\in\\\\mathbb{R}^n$, let\\n$T_{\\\\lambda}^{\\\\nu}=\\\\{x\\\\in\\\\mathbb{R}^n:x\\\\cdot\\\\nu=\\\\lambda\\\\}$,\\n$\\\\Sigma_{\\\\lambda}^{\\\\nu}=\\\\{x\\\\in\\\\Omega:x\\\\cdot\\\\nu<\\\\lambda\\\\}$ and\\n$x^{\\\\ast}=x-2(x\\\\cdot\\\\nu-\\\\lambda)\\\\nu$ be the reflection of a point\\n$x\\\\in\\\\mathbb{R}^n$ about the plane $T_{\\\\lambda}^{\\\\nu}$. Let\\n$\\\\widetilde{\\\\Sigma}_{\\\\lambda}^{\\\\nu}=\\\\{x\\\\in\\\\Omega:x^{\\\\ast}\\\\in\\\\Sigma_{\\\\lambda}^{\\\\nu}\\\\}$\\nand $u\\\\in C^2(\\\\overline{\\\\Omega})$. Suppose for any unit vector\\n$\\\\nu\\\\in\\\\mathbb{R}^n$, there exists a constant $\\\\lambda_{\\\\nu}\\\\in\\\\mathbb{R}$ such\\nthat $\\\\Omega$ is symmetric about the plane $T_{\\\\lambda_{\\\\nu}}^{\\\\nu}$ and $u$ is\\nsymmetric about the plane $T_{\\\\lambda_{\\\\nu}}^{\\\\nu}$ and satisfies\\n(i)$\\\\,\\\\frac{\\\\partial u}{\\\\partial\\\\nu}(x)>0\\\\quad\\\\forall x\\\\in\\n\\\\Sigma_{\\\\lambda_{\\\\nu}}^{\\\\nu}$ and (ii)$\\\\,\\\\frac{\\\\partial\\nu}{\\\\partial\\\\nu}(x)<0\\\\quad\\\\forall x\\\\in\\n\\\\widetilde{\\\\Sigma}_{\\\\lambda_{\\\\nu}}^{\\\\nu}$. We will give a simple proof that $u$\\nis radially symmetric about some point $x_0\\\\in\\\\Omega$ and $\\\\Omega$ is a ball\\nwith center at $x_0$. Similar result holds for the domain $\\\\mathbb{R}^n$ and\\nfunction $u\\\\in C^2(\\\\mathbb{R}^n)$ satisfying similar monotonicity and symmetry\\nconditions. We also extend this result under weaker hypothesis on the function\\n$u$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on the radially symmetry in the moving plane method
Let $\Omega\subset\mathbb{R}^n$, $n\ge 2$, be a bounded connected $C^2$
domain. For any unit vector $\nu\in\mathbb{R}^n$, let
$T_{\lambda}^{\nu}=\{x\in\mathbb{R}^n:x\cdot\nu=\lambda\}$,
$\Sigma_{\lambda}^{\nu}=\{x\in\Omega:x\cdot\nu<\lambda\}$ and
$x^{\ast}=x-2(x\cdot\nu-\lambda)\nu$ be the reflection of a point
$x\in\mathbb{R}^n$ about the plane $T_{\lambda}^{\nu}$. Let
$\widetilde{\Sigma}_{\lambda}^{\nu}=\{x\in\Omega:x^{\ast}\in\Sigma_{\lambda}^{\nu}\}$
and $u\in C^2(\overline{\Omega})$. Suppose for any unit vector
$\nu\in\mathbb{R}^n$, there exists a constant $\lambda_{\nu}\in\mathbb{R}$ such
that $\Omega$ is symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and $u$ is
symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and satisfies
(i)$\,\frac{\partial u}{\partial\nu}(x)>0\quad\forall x\in
\Sigma_{\lambda_{\nu}}^{\nu}$ and (ii)$\,\frac{\partial
u}{\partial\nu}(x)<0\quad\forall x\in
\widetilde{\Sigma}_{\lambda_{\nu}}^{\nu}$. We will give a simple proof that $u$
is radially symmetric about some point $x_0\in\Omega$ and $\Omega$ is a ball
with center at $x_0$. Similar result holds for the domain $\mathbb{R}^n$ and
function $u\in C^2(\mathbb{R}^n)$ satisfying similar monotonicity and symmetry
conditions. We also extend this result under weaker hypothesis on the function
$u$.