{"title":"四阶非线性薛定谔方程的全局解析性","authors":"Mingjuan Chen, Yufeng Lu, Yaqing Wang","doi":"arxiv-2409.11002","DOIUrl":null,"url":null,"abstract":"The local and global well-posedness for the one dimensional fourth-order\nnonlinear Schr\\\"odinger equation are established in the modulation space\n$M^{s}_{2,q}$ for $s\\geq \\frac12$ and $2\\leq q <\\infty$. The local result is\nbased on the $U^p-V^p$ spaces and crucial bilinear estimates. The key\ningredient to obtain the global well-posedness is that we achieve a-priori\nestimates of the solution in modulation spaces by utilizing the power series\nexpansion of the perturbation determinant introduced by Killip-Visan-Zhang for\ncompletely integrable PDEs.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Well-posedness for the Fourth-order Nonlinear Schrodinger Equation\",\"authors\":\"Mingjuan Chen, Yufeng Lu, Yaqing Wang\",\"doi\":\"arxiv-2409.11002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local and global well-posedness for the one dimensional fourth-order\\nnonlinear Schr\\\\\\\"odinger equation are established in the modulation space\\n$M^{s}_{2,q}$ for $s\\\\geq \\\\frac12$ and $2\\\\leq q <\\\\infty$. The local result is\\nbased on the $U^p-V^p$ spaces and crucial bilinear estimates. The key\\ningredient to obtain the global well-posedness is that we achieve a-priori\\nestimates of the solution in modulation spaces by utilizing the power series\\nexpansion of the perturbation determinant introduced by Killip-Visan-Zhang for\\ncompletely integrable PDEs.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Well-posedness for the Fourth-order Nonlinear Schrodinger Equation
The local and global well-posedness for the one dimensional fourth-order
nonlinear Schr\"odinger equation are established in the modulation space
$M^{s}_{2,q}$ for $s\geq \frac12$ and $2\leq q <\infty$. The local result is
based on the $U^p-V^p$ spaces and crucial bilinear estimates. The key
ingredient to obtain the global well-posedness is that we achieve a-priori
estimates of the solution in modulation spaces by utilizing the power series
expansion of the perturbation determinant introduced by Killip-Visan-Zhang for
completely integrable PDEs.