索波列夫空间中 MHD 边界层方程的全局好求解性

Wei-Xi Li, Zhan Xu, Anita Yang
{"title":"索波列夫空间中 MHD 边界层方程的全局好求解性","authors":"Wei-Xi Li, Zhan Xu, Anita Yang","doi":"arxiv-2409.11009","DOIUrl":null,"url":null,"abstract":"We study the two-dimensional MHD boundary layer equations. For small\nperturbation around a tangential background magnetic field, we obtain the\nglobal-in-time existence and uniqueness of solutions in Sobolev spaces. The\nproof relies on the novel combination of the well-explored cancellation\nmechanism and the idea of linearly-good unknowns, and in fact we use the former\nidea to deal with the top tangential derivatives and the latter one admitting\nfast decay rate to control lower-order derivatives.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of the MHD boundary layer equation in the Sobolev Space\",\"authors\":\"Wei-Xi Li, Zhan Xu, Anita Yang\",\"doi\":\"arxiv-2409.11009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the two-dimensional MHD boundary layer equations. For small\\nperturbation around a tangential background magnetic field, we obtain the\\nglobal-in-time existence and uniqueness of solutions in Sobolev spaces. The\\nproof relies on the novel combination of the well-explored cancellation\\nmechanism and the idea of linearly-good unknowns, and in fact we use the former\\nidea to deal with the top tangential derivatives and the latter one admitting\\nfast decay rate to control lower-order derivatives.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了二维 MHD 边界层方程。对于切向背景磁场周围的小扰动,我们得到了索波列夫空间中解的全局时间存在性和唯一性。该证明依赖于探索良好的取消机制和线性良好未知数思想的新颖结合,事实上,我们使用前一种思想来处理切向顶导数,而后一种思想采用快速衰减率来控制低阶导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness of the MHD boundary layer equation in the Sobolev Space
We study the two-dimensional MHD boundary layer equations. For small perturbation around a tangential background magnetic field, we obtain the global-in-time existence and uniqueness of solutions in Sobolev spaces. The proof relies on the novel combination of the well-explored cancellation mechanism and the idea of linearly-good unknowns, and in fact we use the former idea to deal with the top tangential derivatives and the latter one admitting fast decay rate to control lower-order derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信