{"title":"C. Miranda 关于 Schauder 空间中层势的定理的极限情况","authors":"Massimo Lanza de Cristoforis","doi":"arxiv-2409.11132","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to prove a theorem of C.~Miranda for the single and\ndouble layer potential corresponding to the fundamental solution of a second\norder differential operator with constant coefficients in Schauder spaces in\nthe limiting case in which the open set is of class $C^{m,1}$ and the densities\nare of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$\nfor the double layer potential for some nonzero natural number $m$. The\ntreatment of the limiting case requires generalized Schauder spaces.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A limiting case of a theorem of C. Miranda for layer potentials in Schauder spaces\",\"authors\":\"Massimo Lanza de Cristoforis\",\"doi\":\"arxiv-2409.11132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to prove a theorem of C.~Miranda for the single and\\ndouble layer potential corresponding to the fundamental solution of a second\\norder differential operator with constant coefficients in Schauder spaces in\\nthe limiting case in which the open set is of class $C^{m,1}$ and the densities\\nare of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$\\nfor the double layer potential for some nonzero natural number $m$. The\\ntreatment of the limiting case requires generalized Schauder spaces.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A limiting case of a theorem of C. Miranda for layer potentials in Schauder spaces
The aim of this paper is to prove a theorem of C.~Miranda for the single and
double layer potential corresponding to the fundamental solution of a second
order differential operator with constant coefficients in Schauder spaces in
the limiting case in which the open set is of class $C^{m,1}$ and the densities
are of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$
for the double layer potential for some nonzero natural number $m$. The
treatment of the limiting case requires generalized Schauder spaces.