C. Miranda 关于 Schauder 空间中层势的定理的极限情况

Massimo Lanza de Cristoforis
{"title":"C. Miranda 关于 Schauder 空间中层势的定理的极限情况","authors":"Massimo Lanza de Cristoforis","doi":"arxiv-2409.11132","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to prove a theorem of C.~Miranda for the single and\ndouble layer potential corresponding to the fundamental solution of a second\norder differential operator with constant coefficients in Schauder spaces in\nthe limiting case in which the open set is of class $C^{m,1}$ and the densities\nare of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$\nfor the double layer potential for some nonzero natural number $m$. The\ntreatment of the limiting case requires generalized Schauder spaces.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A limiting case of a theorem of C. Miranda for layer potentials in Schauder spaces\",\"authors\":\"Massimo Lanza de Cristoforis\",\"doi\":\"arxiv-2409.11132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to prove a theorem of C.~Miranda for the single and\\ndouble layer potential corresponding to the fundamental solution of a second\\norder differential operator with constant coefficients in Schauder spaces in\\nthe limiting case in which the open set is of class $C^{m,1}$ and the densities\\nare of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$\\nfor the double layer potential for some nonzero natural number $m$. The\\ntreatment of the limiting case requires generalized Schauder spaces.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是证明 C.~Miranda 的一个定理,即在开集的类为 $C^{m,1}$,且对于某个非零自然数 $m$,单层势的密度为类 $C^{m-1,1}$,双层势的密度为类 $C^{m,1}$的极限情况下,与 Schauder 空间中具有常数系数的二阶微分算子的基本解相对应的单层势和双层势。处理极限情况需要广义的肖德空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A limiting case of a theorem of C. Miranda for layer potentials in Schauder spaces
The aim of this paper is to prove a theorem of C.~Miranda for the single and double layer potential corresponding to the fundamental solution of a second order differential operator with constant coefficients in Schauder spaces in the limiting case in which the open set is of class $C^{m,1}$ and the densities are of class $C^{m-1,1}$ for the single layer potential and of class $C^{m,1}$ for the double layer potential for some nonzero natural number $m$. The treatment of the limiting case requires generalized Schauder spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信