具有α$同调权重的索波列夫临界嵌入极值函数的存在性

Petr Gurka, Daniel Hauer
{"title":"具有α$同调权重的索波列夫临界嵌入极值函数的存在性","authors":"Petr Gurka, Daniel Hauer","doi":"arxiv-2409.11193","DOIUrl":null,"url":null,"abstract":"In our previous publication [{\\em Calc. Var. Partial Differential Equations},\n60(1):Paper No. 16, 27, 2021], we delved into examining a critical Sobolev-type\nembedding of a Sobolev weighted space into an exponential weighted Orlicz\nspace. We specifically determined the optimal Moser-type constant for this\nembedding, utilizing the monomial weight introduced by Cabr\\'e and Ros-Oton\n[{\\em J. Differential Equations}, 255(11):4312--4336, 2013]. Towards the\nconclusion of that paper, we pledged to explore the existence of an extremal\nfunction within this framework. In this current work, we not only provide a positive affirmation to this\ninquiry but extend it to a broader range of weights known as\n\\emph{$\\alpha$-homogeneous weights}.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of an extremal function of Sobolev critical embedding with an $α$-homogeneous weight\",\"authors\":\"Petr Gurka, Daniel Hauer\",\"doi\":\"arxiv-2409.11193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous publication [{\\\\em Calc. Var. Partial Differential Equations},\\n60(1):Paper No. 16, 27, 2021], we delved into examining a critical Sobolev-type\\nembedding of a Sobolev weighted space into an exponential weighted Orlicz\\nspace. We specifically determined the optimal Moser-type constant for this\\nembedding, utilizing the monomial weight introduced by Cabr\\\\'e and Ros-Oton\\n[{\\\\em J. Differential Equations}, 255(11):4312--4336, 2013]. Towards the\\nconclusion of that paper, we pledged to explore the existence of an extremal\\nfunction within this framework. In this current work, we not only provide a positive affirmation to this\\ninquiry but extend it to a broader range of weights known as\\n\\\\emph{$\\\\alpha$-homogeneous weights}.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们以前的出版物 [{\em Calc.Var.Partial Differential Equations},60(1):Paper No. 16, 27, 2021]中,我们深入研究了将一个索波列夫加权空间嵌入指数加权奥立兹空间的临界索波列夫型嵌入。我们利用 Cabr\'e 和 Ros-Oton[{\em J. Differential Equations},255(11):4312--4336,2013]引入的单项式权重,具体确定了该嵌入的最优莫瑟型常数。在那篇论文的结论中,我们承诺在此框架内探索极值函数的存在性。在目前的工作中,我们不仅为这一探索提供了积极的肯定,而且将其扩展到了更广泛的权重范围,即所谓的(emph{$\alpha$-homogeneous weights}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of an extremal function of Sobolev critical embedding with an $α$-homogeneous weight
In our previous publication [{\em Calc. Var. Partial Differential Equations}, 60(1):Paper No. 16, 27, 2021], we delved into examining a critical Sobolev-type embedding of a Sobolev weighted space into an exponential weighted Orlicz space. We specifically determined the optimal Moser-type constant for this embedding, utilizing the monomial weight introduced by Cabr\'e and Ros-Oton [{\em J. Differential Equations}, 255(11):4312--4336, 2013]. Towards the conclusion of that paper, we pledged to explore the existence of an extremal function within this framework. In this current work, we not only provide a positive affirmation to this inquiry but extend it to a broader range of weights known as \emph{$\alpha$-homogeneous weights}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信