节点集的图结构和黎曼流形上特征函数临界点数量的界限

Matthias Hofmann, Matthias Täufer
{"title":"节点集的图结构和黎曼流形上特征函数临界点数量的界限","authors":"Matthias Hofmann, Matthias Täufer","doi":"arxiv-2409.11800","DOIUrl":null,"url":null,"abstract":"In this article we illustrate and draw connections between the geometry of\nzero sets of eigenfunctions, graph theory, vanishing order of eigenfunctions,\nand unique continuation. We identify the nodal set of an eigenfunction of the\nLaplacian (with smooth potential) on a compact, orientable Riemannian manifold\nas an \\emph{imbedded metric graph} and then use tools from elementary graph\ntheory in order to estimate the number of critical points in the nodal set of\nthe $k$-th eigenfunction and the sum of vanishing orders at critical points in\nterms of $k$ and the genus of the manifold.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph structure of the nodal set and bounds on the number of critical points of eigenfunctions on Riemannian manifolds\",\"authors\":\"Matthias Hofmann, Matthias Täufer\",\"doi\":\"arxiv-2409.11800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we illustrate and draw connections between the geometry of\\nzero sets of eigenfunctions, graph theory, vanishing order of eigenfunctions,\\nand unique continuation. We identify the nodal set of an eigenfunction of the\\nLaplacian (with smooth potential) on a compact, orientable Riemannian manifold\\nas an \\\\emph{imbedded metric graph} and then use tools from elementary graph\\ntheory in order to estimate the number of critical points in the nodal set of\\nthe $k$-th eigenfunction and the sum of vanishing orders at critical points in\\nterms of $k$ and the genus of the manifold.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文阐述了特征函数零集的几何、图论、特征函数的消失阶以及唯一延续之间的联系。我们将紧凑可定向黎曼流形上的拉普拉奇(光滑势)特征函数的结点集确定为一个emph{imbedded metric graph},然后使用初等图论中的工具来估计第k$个特征函数结点集中的临界点数目以及临界点上的消失阶数与$k$和流形属数的关系之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph structure of the nodal set and bounds on the number of critical points of eigenfunctions on Riemannian manifolds
In this article we illustrate and draw connections between the geometry of zero sets of eigenfunctions, graph theory, vanishing order of eigenfunctions, and unique continuation. We identify the nodal set of an eigenfunction of the Laplacian (with smooth potential) on a compact, orientable Riemannian manifold as an \emph{imbedded metric graph} and then use tools from elementary graph theory in order to estimate the number of critical points in the nodal set of the $k$-th eigenfunction and the sum of vanishing orders at critical points in terms of $k$ and the genus of the manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信