具有退化权重的非局部方程

Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes
{"title":"具有退化权重的非局部方程","authors":"Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes","doi":"arxiv-2409.11829","DOIUrl":null,"url":null,"abstract":"We introduce fractional weighted Sobolev spaces with degenerate weights. For\nthese spaces we provide embeddings and Poincar\\'e inequalities. When the order\nof fractional differentiability goes to $0$ or $1$, we recover the weighted\nLebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,\nwe prove interior H\\\"older continuity and Harnack inequalities for solutions to\nthe corresponding weighted nonlocal integro-differential equations. This\nnaturally extends a classical result by Fabes, Kenig, and Serapioni to the\nnonlinear, nonlocal setting.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal equations with degenerate weights\",\"authors\":\"Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes\",\"doi\":\"arxiv-2409.11829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce fractional weighted Sobolev spaces with degenerate weights. For\\nthese spaces we provide embeddings and Poincar\\\\'e inequalities. When the order\\nof fractional differentiability goes to $0$ or $1$, we recover the weighted\\nLebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,\\nwe prove interior H\\\\\\\"older continuity and Harnack inequalities for solutions to\\nthe corresponding weighted nonlocal integro-differential equations. This\\nnaturally extends a classical result by Fabes, Kenig, and Serapioni to the\\nnonlinear, nonlocal setting.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了具有退化权重的分数加权索波列夫空间。我们为这些空间提供了嵌入和 Poincar\'e 不等式。当分数可微分性的阶数达到 $0$ 或 $1$时,我们将分别恢复具有 Muckenhoupt 权重的加权 Lebesgue 空间和 Sobolev 空间。此外,我们还证明了相应加权非局部积分微分方程解的内部连续性和哈纳克不等式。这自然而然地将 Fabes、Kenig 和 Serapioni 的经典结果扩展到了非线性、非局部环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal equations with degenerate weights
We introduce fractional weighted Sobolev spaces with degenerate weights. For these spaces we provide embeddings and Poincar\'e inequalities. When the order of fractional differentiability goes to $0$ or $1$, we recover the weighted Lebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover, we prove interior H\"older continuity and Harnack inequalities for solutions to the corresponding weighted nonlocal integro-differential equations. This naturally extends a classical result by Fabes, Kenig, and Serapioni to the nonlinear, nonlocal setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信