Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes
{"title":"具有退化权重的非局部方程","authors":"Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes","doi":"arxiv-2409.11829","DOIUrl":null,"url":null,"abstract":"We introduce fractional weighted Sobolev spaces with degenerate weights. For\nthese spaces we provide embeddings and Poincar\\'e inequalities. When the order\nof fractional differentiability goes to $0$ or $1$, we recover the weighted\nLebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,\nwe prove interior H\\\"older continuity and Harnack inequalities for solutions to\nthe corresponding weighted nonlocal integro-differential equations. This\nnaturally extends a classical result by Fabes, Kenig, and Serapioni to the\nnonlinear, nonlocal setting.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal equations with degenerate weights\",\"authors\":\"Linus Behn, Lars Diening, Jihoon Ok, Julian Rolfes\",\"doi\":\"arxiv-2409.11829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce fractional weighted Sobolev spaces with degenerate weights. For\\nthese spaces we provide embeddings and Poincar\\\\'e inequalities. When the order\\nof fractional differentiability goes to $0$ or $1$, we recover the weighted\\nLebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,\\nwe prove interior H\\\\\\\"older continuity and Harnack inequalities for solutions to\\nthe corresponding weighted nonlocal integro-differential equations. This\\nnaturally extends a classical result by Fabes, Kenig, and Serapioni to the\\nnonlinear, nonlocal setting.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce fractional weighted Sobolev spaces with degenerate weights. For
these spaces we provide embeddings and Poincar\'e inequalities. When the order
of fractional differentiability goes to $0$ or $1$, we recover the weighted
Lebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,
we prove interior H\"older continuity and Harnack inequalities for solutions to
the corresponding weighted nonlocal integro-differential equations. This
naturally extends a classical result by Fabes, Kenig, and Serapioni to the
nonlinear, nonlocal setting.