非线性粘弹性中粘应力和应变率的非线性关系

Lennart Machill
{"title":"非线性粘弹性中粘应力和应变率的非线性关系","authors":"Lennart Machill","doi":"arxiv-2409.11882","DOIUrl":null,"url":null,"abstract":"We consider a Kelvin-Voigt model for viscoelastic second-grade materials,\nwhere the elastic and the viscous stress tensor both satisfy frame\nindifference. Using a rigidity estimate by [Ciarlet-Mardare '15], existence of\nweak solutions is shown by means of a frame-indifferent time-discretization\nscheme. Further, the result includes viscous stress tensors which can be\ncalculated by nonquadratic polynomial densities. Afterwards, we investigate the\nlong-time behavior of solutions in the case of small external loading and\ninitial data. Our main tool is the abstract theory of metric gradient flows.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear relations of viscous stress and strain rate in nonlinear Viscoelasticity\",\"authors\":\"Lennart Machill\",\"doi\":\"arxiv-2409.11882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Kelvin-Voigt model for viscoelastic second-grade materials,\\nwhere the elastic and the viscous stress tensor both satisfy frame\\nindifference. Using a rigidity estimate by [Ciarlet-Mardare '15], existence of\\nweak solutions is shown by means of a frame-indifferent time-discretization\\nscheme. Further, the result includes viscous stress tensors which can be\\ncalculated by nonquadratic polynomial densities. Afterwards, we investigate the\\nlong-time behavior of solutions in the case of small external loading and\\ninitial data. Our main tool is the abstract theory of metric gradient flows.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了粘弹性二级材料的开尔文-沃伊特模型,其中弹性和粘性应力张量均满足框架差分。利用[Ciarlet-Mardare'15]的刚度估计,通过帧差时间离散化方案证明了弱解的存在。此外,该结果还包括粘性应力张量,可通过非二次多项式密度计算。随后,我们研究了小外部载荷和初始数据情况下的解的长时行为。我们的主要工具是度量梯度流的抽象理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear relations of viscous stress and strain rate in nonlinear Viscoelasticity
We consider a Kelvin-Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame indifference. Using a rigidity estimate by [Ciarlet-Mardare '15], existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信