二维背景下双重退化趋化-消耗系统解的渐近行为

Duan Wu
{"title":"二维背景下双重退化趋化-消耗系统解的渐近行为","authors":"Duan Wu","doi":"arxiv-2409.12083","DOIUrl":null,"url":null,"abstract":"The present work proceeds to consider the convergence of the solutions to the\nfollowing doubly degenerate chemotaxis-consumption system \\begin{align*}\n\\left\\{ \\begin{array}{r@{\\,}l@{\\quad}l@{\\,}c}\n&u_{t}=\\nabla\\cdot\\big(u^{m-1}v\\nabla v\\big)-\\nabla\\cdot\\big(f(u)v\\nabla\nv\\big)+\\ell uv,\\\\ &v_{t}=\\Delta v-uv, \\end{array}\\right.%} \\end{align*} under\nno-flux boundary conditions in a smoothly bounded convex domain $\\Omega\\subset\n\\R^2$, where the nonnegative function $f\\in C^1([0,\\infty))$ is asked to\nsatisfy $f(s)\\le C_fs^{\\al}$ with $\\al, C_f>0$ for all $s\\ge 1$. The global existence of weak solutions or classical solutions to the above\nsystem has been established in both one- and two-dimensional bounded convex\ndomains in previous works. However, the results concerning the large time\nbehavior are still constrained to one dimension due to the lack of a\nHarnack-type inequality in the two-dimensional case. In this note, we\ncomplement this result by using the Moser iteration technique and building a\nnew Harnack-type inequality.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic behavior of solutions to a doubly degenerate chemotaxis-consumption system in two-dimensional setting\",\"authors\":\"Duan Wu\",\"doi\":\"arxiv-2409.12083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work proceeds to consider the convergence of the solutions to the\\nfollowing doubly degenerate chemotaxis-consumption system \\\\begin{align*}\\n\\\\left\\\\{ \\\\begin{array}{r@{\\\\,}l@{\\\\quad}l@{\\\\,}c}\\n&u_{t}=\\\\nabla\\\\cdot\\\\big(u^{m-1}v\\\\nabla v\\\\big)-\\\\nabla\\\\cdot\\\\big(f(u)v\\\\nabla\\nv\\\\big)+\\\\ell uv,\\\\\\\\ &v_{t}=\\\\Delta v-uv, \\\\end{array}\\\\right.%} \\\\end{align*} under\\nno-flux boundary conditions in a smoothly bounded convex domain $\\\\Omega\\\\subset\\n\\\\R^2$, where the nonnegative function $f\\\\in C^1([0,\\\\infty))$ is asked to\\nsatisfy $f(s)\\\\le C_fs^{\\\\al}$ with $\\\\al, C_f>0$ for all $s\\\\ge 1$. The global existence of weak solutions or classical solutions to the above\\nsystem has been established in both one- and two-dimensional bounded convex\\ndomains in previous works. However, the results concerning the large time\\nbehavior are still constrained to one dimension due to the lack of a\\nHarnack-type inequality in the two-dimensional case. In this note, we\\ncomplement this result by using the Moser iteration technique and building a\\nnew Harnack-type inequality.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究着手考虑以下双退化趋化-消耗系统解的收敛性 \begin{align*}\left\{ \begin{array}{r@{\、u_{t}=\nabla\cdot\big(u^{m-1}v\nabla v\big)-\nabla\cdot\big(f(u)v\nablav\big)+\ell uv,\ &v_{t}=\Delta v-uv,\end{array}\right.%}\在平滑有界凸域 $\Omega\subset\R^2$ 中,非负函数 $f\in C^1([0,\infty))$ 被要求满足 $f(s)\le C_fs^{al}$ 对于所有 $s\ge 1$,$\al, C_f>0$ 的条件。在以往的研究中,已经在一维和二维有界凸域中建立了上述系统的弱解或经典解的全局存在性。然而,由于在二维情况下缺乏哈纳克式不等式,有关大时间行为的结果仍然局限于一维。在本注释中,我们利用莫瑟迭代技术和建立新的哈纳克型不等式来补充这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotic behavior of solutions to a doubly degenerate chemotaxis-consumption system in two-dimensional setting
The present work proceeds to consider the convergence of the solutions to the following doubly degenerate chemotaxis-consumption system \begin{align*} \left\{ \begin{array}{r@{\,}l@{\quad}l@{\,}c} &u_{t}=\nabla\cdot\big(u^{m-1}v\nabla v\big)-\nabla\cdot\big(f(u)v\nabla v\big)+\ell uv,\\ &v_{t}=\Delta v-uv, \end{array}\right.%} \end{align*} under no-flux boundary conditions in a smoothly bounded convex domain $\Omega\subset \R^2$, where the nonnegative function $f\in C^1([0,\infty))$ is asked to satisfy $f(s)\le C_fs^{\al}$ with $\al, C_f>0$ for all $s\ge 1$. The global existence of weak solutions or classical solutions to the above system has been established in both one- and two-dimensional bounded convex domains in previous works. However, the results concerning the large time behavior are still constrained to one dimension due to the lack of a Harnack-type inequality in the two-dimensional case. In this note, we complement this result by using the Moser iteration technique and building a new Harnack-type inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信