WALLABY 试点调查:利用机器学习框架进行 HI 寻源

Li Wang, O. Ivy Wong, Tobias Westmeier, Chandrashekar Murugeshan, Karen Lee-Waddell, Yuanzhi. Cai, Xiu. Liu, Austin Xiaofan Shen, Jonghwan Rhee, Helga Dénes, Nathan Deg, Peter Kamphuis
{"title":"WALLABY 试点调查:利用机器学习框架进行 HI 寻源","authors":"Li Wang, O. Ivy Wong, Tobias Westmeier, Chandrashekar Murugeshan, Karen Lee-Waddell, Yuanzhi. Cai, Xiu. Liu, Austin Xiaofan Shen, Jonghwan Rhee, Helga Dénes, Nathan Deg, Peter Kamphuis","doi":"arxiv-2409.11668","DOIUrl":null,"url":null,"abstract":"The data volumes generated by the WALLABY atomic Hydrogen (HI) survey using\nthe Australiian Square Kilometre Array Pathfinder (ASKAP) necessitate greater\nautomation and reliable automation in the task of source-finding and\ncataloguing. To this end, we introduce and explore a novel deep learning\nframework for detecting low Signal-to-Noise Ratio (SNR) HI sources in an\nautomated fashion. Specfically, our proposed method provides an automated\nprocess for separating true HI detections from false positives when used in\ncombination with the Source Finding Application (SoFiA) output candidate\ncatalogues. Leveraging the spatial and depth capabilities of 3D Convolutional\nNeural Networks (CNNs), our method is specifically designed to recognise\npatterns and features in three-dimensional space, making it uniquely suited for\nrejecting false positive sources in low SNR scenarios generated by conventional\nlinear methods. As a result, our approach is significantly more accurate in\nsource detection and results in considerably fewer false detections compared to\nprevious linear statistics-based source finding algorithms. Performance tests\nusing mock galaxies injected into real ASKAP data cubes reveal our method's\ncapability to achieve near-100% completeness and reliability at a relatively\nlow integrated SNR~3-5. An at-scale version of this tool will greatly maximise\nthe science output from the upcoming widefield HI surveys.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WALLABY Pilot Survey: HI source-finding with a machine learning framework\",\"authors\":\"Li Wang, O. Ivy Wong, Tobias Westmeier, Chandrashekar Murugeshan, Karen Lee-Waddell, Yuanzhi. Cai, Xiu. Liu, Austin Xiaofan Shen, Jonghwan Rhee, Helga Dénes, Nathan Deg, Peter Kamphuis\",\"doi\":\"arxiv-2409.11668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The data volumes generated by the WALLABY atomic Hydrogen (HI) survey using\\nthe Australiian Square Kilometre Array Pathfinder (ASKAP) necessitate greater\\nautomation and reliable automation in the task of source-finding and\\ncataloguing. To this end, we introduce and explore a novel deep learning\\nframework for detecting low Signal-to-Noise Ratio (SNR) HI sources in an\\nautomated fashion. Specfically, our proposed method provides an automated\\nprocess for separating true HI detections from false positives when used in\\ncombination with the Source Finding Application (SoFiA) output candidate\\ncatalogues. Leveraging the spatial and depth capabilities of 3D Convolutional\\nNeural Networks (CNNs), our method is specifically designed to recognise\\npatterns and features in three-dimensional space, making it uniquely suited for\\nrejecting false positive sources in low SNR scenarios generated by conventional\\nlinear methods. As a result, our approach is significantly more accurate in\\nsource detection and results in considerably fewer false detections compared to\\nprevious linear statistics-based source finding algorithms. Performance tests\\nusing mock galaxies injected into real ASKAP data cubes reveal our method's\\ncapability to achieve near-100% completeness and reliability at a relatively\\nlow integrated SNR~3-5. An at-scale version of this tool will greatly maximise\\nthe science output from the upcoming widefield HI surveys.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用澳大利亚平方公里阵列探路者(ASKAP)进行的瓦拉比原子氢(HI)探测所产生的数据量要求在寻找源和编目任务中实现更高的自动化和可靠的自动化。为此,我们引入并探索了一种新型深度学习框架,用于以自动化方式检测低信噪比(SNR)HI 信号源。具体来说,我们提出的方法提供了一个自动流程,用于将真正的 HI 检测从假阳性中分离出来,并与信号源查找应用程序(SoFiA)输出的候选目录结合使用。利用三维卷积神经网络(CNN)的空间和深度能力,我们的方法专门设计用于识别三维空间中的模式和特征,因此非常适合在传统线性方法产生的低信噪比情况下剔除假阳性信号源。因此,与以前基于线性统计的源探测算法相比,我们的方法在源探测方面要准确得多,误探测也少得多。利用注入真实ASKAP数据立方体的模拟星系进行的性能测试表明,我们的方法能够在相对较低的综合信噪比(SNR)~3-5的条件下实现接近100%的完整性和可靠性。这一工具的大规模版本将大大提高即将开展的宽视场高频探测的科学产出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WALLABY Pilot Survey: HI source-finding with a machine learning framework
The data volumes generated by the WALLABY atomic Hydrogen (HI) survey using the Australiian Square Kilometre Array Pathfinder (ASKAP) necessitate greater automation and reliable automation in the task of source-finding and cataloguing. To this end, we introduce and explore a novel deep learning framework for detecting low Signal-to-Noise Ratio (SNR) HI sources in an automated fashion. Specfically, our proposed method provides an automated process for separating true HI detections from false positives when used in combination with the Source Finding Application (SoFiA) output candidate catalogues. Leveraging the spatial and depth capabilities of 3D Convolutional Neural Networks (CNNs), our method is specifically designed to recognise patterns and features in three-dimensional space, making it uniquely suited for rejecting false positive sources in low SNR scenarios generated by conventional linear methods. As a result, our approach is significantly more accurate in source detection and results in considerably fewer false detections compared to previous linear statistics-based source finding algorithms. Performance tests using mock galaxies injected into real ASKAP data cubes reveal our method's capability to achieve near-100% completeness and reliability at a relatively low integrated SNR~3-5. An at-scale version of this tool will greatly maximise the science output from the upcoming widefield HI surveys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信