{"title":"基于等效误差建模,从位置、重复性和可逆性误差预测和分析 3 轴 FXYZ 坐标测量机的测量精度","authors":"J. Jodar, P. Franco","doi":"10.1007/s12541-024-01090-9","DOIUrl":null,"url":null,"abstract":"<p>The measuring accuracy of coordinate measuring machines (CMMs) will be affected by the different geometrical and dynamic errors, including the deviations associated to the axis displacement, the working table and the part to be measured. This work is focused on the analysis of the influence of the position errors, repeatability errors and reversibility errors in 3-axis FXYZ coordinate measuring machines, and it will be developed by a numerical model that is known as EE-based stochastic model. This model implements a new error index that is named equivalent error (EE), which will integrate the totality of machine errors of the CMMs and will allow a global description of all these error sources by means of a unique error parameter. The results obtained by this numerical model have been compared with the application of a traditional method, and it was probed that the EE-based model makes possible an increase of a 13.29% in the linear modelling of the performance of CMMs from the machine errors considered in this work, which implies a relevant improvement for the analysis and description of the effect of the distinct error sources on the achievable measuring accuracy of CMMs. For this reason, the EE-based model will be of special interest for industrial applications such as the quality control to be applied inside the production systems dedicated to manufacture mechanical components of high dimensional accuracy.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":"87 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent Error Based Modelling for Prediction and Analysis of Measuring Accuracy in 3-Axis FXYZ Coordinate Measuring Machines from Position, Repeatability and Reversibility Errors\",\"authors\":\"J. Jodar, P. Franco\",\"doi\":\"10.1007/s12541-024-01090-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The measuring accuracy of coordinate measuring machines (CMMs) will be affected by the different geometrical and dynamic errors, including the deviations associated to the axis displacement, the working table and the part to be measured. This work is focused on the analysis of the influence of the position errors, repeatability errors and reversibility errors in 3-axis FXYZ coordinate measuring machines, and it will be developed by a numerical model that is known as EE-based stochastic model. This model implements a new error index that is named equivalent error (EE), which will integrate the totality of machine errors of the CMMs and will allow a global description of all these error sources by means of a unique error parameter. The results obtained by this numerical model have been compared with the application of a traditional method, and it was probed that the EE-based model makes possible an increase of a 13.29% in the linear modelling of the performance of CMMs from the machine errors considered in this work, which implies a relevant improvement for the analysis and description of the effect of the distinct error sources on the achievable measuring accuracy of CMMs. For this reason, the EE-based model will be of special interest for industrial applications such as the quality control to be applied inside the production systems dedicated to manufacture mechanical components of high dimensional accuracy.</p>\",\"PeriodicalId\":14359,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12541-024-01090-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01090-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
坐标测量机 (CMM) 的测量精度会受到不同几何误差和动态误差的影响,包括与轴位移、工作台和待测工件相关的偏差。这项工作的重点是分析三轴 FXYZ 坐标测量机的位置误差、重复性误差和可逆性误差的影响。该模型采用了一种名为等效误差 (EE) 的新误差指数,它将整合坐标测量机的所有机器误差,并通过一个唯一的误差参数对所有这些误差源进行全局描述。该数值模型所获得的结果与传统方法的应用进行了比较,结果表明,基于等效误差的模型使本研究中考虑的机器误差对坐标测量机性能的线性建模提高了 13.29%,这意味着在分析和描述不同误差源对坐标测量机可达到的测量精度的影响方面有了相关改进。因此,基于 EE 的模型将特别适用于工业应用,例如用于制造高尺寸精度机械部件的生产系统内部的质量控制。
Equivalent Error Based Modelling for Prediction and Analysis of Measuring Accuracy in 3-Axis FXYZ Coordinate Measuring Machines from Position, Repeatability and Reversibility Errors
The measuring accuracy of coordinate measuring machines (CMMs) will be affected by the different geometrical and dynamic errors, including the deviations associated to the axis displacement, the working table and the part to be measured. This work is focused on the analysis of the influence of the position errors, repeatability errors and reversibility errors in 3-axis FXYZ coordinate measuring machines, and it will be developed by a numerical model that is known as EE-based stochastic model. This model implements a new error index that is named equivalent error (EE), which will integrate the totality of machine errors of the CMMs and will allow a global description of all these error sources by means of a unique error parameter. The results obtained by this numerical model have been compared with the application of a traditional method, and it was probed that the EE-based model makes possible an increase of a 13.29% in the linear modelling of the performance of CMMs from the machine errors considered in this work, which implies a relevant improvement for the analysis and description of the effect of the distinct error sources on the achievable measuring accuracy of CMMs. For this reason, the EE-based model will be of special interest for industrial applications such as the quality control to be applied inside the production systems dedicated to manufacture mechanical components of high dimensional accuracy.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.