熵、共循环及其图解法

Mee Seong Im, Mikhail Khovanov
{"title":"熵、共循环及其图解法","authors":"Mee Seong Im, Mikhail Khovanov","doi":"arxiv-2409.08462","DOIUrl":null,"url":null,"abstract":"The first part of the paper explains how to encode a one-cocycle and a\ntwo-cocycle on a group $G$ with values in its representation by networks of\nplanar trivalent graphs with edges labelled by elements of $G$, elements of the\nrepresentation floating in the regions, and suitable rules for manipulation of\nthese diagrams. When the group is a semidirect product, there is a similar\npresentation via overlapping networks for the two subgroups involved. M. Kontsevich and J.-L. Cathelineau have shown how to interpret the entropy\nof a finite random variable and infinitesimal dilogarithms, including their\nfour-term functional relations, via 2-cocycles on the group of affine\nsymmetries of a line. We convert their construction into a diagrammatical calculus evaluating\nplanar networks that describe morphisms in suitable monoidal categories. In\nparticular, the four-term relations become equalities of networks analogous to\nassociativity equations. The resulting monoidal categories complement existing\ncategorical and operadic approaches to entropy.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy, cocycles, and their diagrammatics\",\"authors\":\"Mee Seong Im, Mikhail Khovanov\",\"doi\":\"arxiv-2409.08462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first part of the paper explains how to encode a one-cocycle and a\\ntwo-cocycle on a group $G$ with values in its representation by networks of\\nplanar trivalent graphs with edges labelled by elements of $G$, elements of the\\nrepresentation floating in the regions, and suitable rules for manipulation of\\nthese diagrams. When the group is a semidirect product, there is a similar\\npresentation via overlapping networks for the two subgroups involved. M. Kontsevich and J.-L. Cathelineau have shown how to interpret the entropy\\nof a finite random variable and infinitesimal dilogarithms, including their\\nfour-term functional relations, via 2-cocycles on the group of affine\\nsymmetries of a line. We convert their construction into a diagrammatical calculus evaluating\\nplanar networks that describe morphisms in suitable monoidal categories. In\\nparticular, the four-term relations become equalities of networks analogous to\\nassociativity equations. The resulting monoidal categories complement existing\\ncategorical and operadic approaches to entropy.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

论文的第一部分解释了如何通过平面三价图网络(其边由 $G$ 的元素标示)对一个具有数值的群 $G$ 上的单循环和双循环进行编码,并说明了操作这些图的合适规则。当群是半直接乘积时,对于涉及的两个子群,也可以通过重叠网络进行类似的表示。M. Kontsevich 和 J.-L. Cathelineau 证明了如何通过线的非对称性群上的 2-Cocycles 来解释有限随机变量的熵和无穷小的稀疏自变量,包括它们的四项函数关系。我们将它们的构造转换成图解微积分,评估描述适当单环范畴中态量的平面网络。特别是,四项关系成为网络的等式,类似于联立方程。由此产生的单环范畴补充了现有的分类和运算熵方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy, cocycles, and their diagrammatics
The first part of the paper explains how to encode a one-cocycle and a two-cocycle on a group $G$ with values in its representation by networks of planar trivalent graphs with edges labelled by elements of $G$, elements of the representation floating in the regions, and suitable rules for manipulation of these diagrams. When the group is a semidirect product, there is a similar presentation via overlapping networks for the two subgroups involved. M. Kontsevich and J.-L. Cathelineau have shown how to interpret the entropy of a finite random variable and infinitesimal dilogarithms, including their four-term functional relations, via 2-cocycles on the group of affine symmetries of a line. We convert their construction into a diagrammatical calculus evaluating planar networks that describe morphisms in suitable monoidal categories. In particular, the four-term relations become equalities of networks analogous to associativity equations. The resulting monoidal categories complement existing categorical and operadic approaches to entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信