流体动力学中的数学混沌:循环模式预测统计

Baoying Wang, Roger Ayats, Kengo Deguchi, Alvaro Meseguer, Fernando Mellibovsky
{"title":"流体动力学中的数学混沌:循环模式预测统计","authors":"Baoying Wang, Roger Ayats, Kengo Deguchi, Alvaro Meseguer, Fernando Mellibovsky","doi":"arxiv-2409.09234","DOIUrl":null,"url":null,"abstract":"We analyse in the Taylor-Couette system, a canonical flow that has been\nstudied extensively for over a century, a parameter regime exhibiting dynamics\nthat can be approximated by a simple discrete map. The map has exceptionally\nneat mathematical properties, allowing to prove its chaotic nature as well as\nthe existence of infinitely many unstable periodic orbits. Remarkably, the\nfluid system and the discrete map share a common catalog of unstable periodic\nsolutions with the tent map, a clear indication of topological conjugacy. A\nsufficient number of these solutions enables the construction of a conjugacy\nhomeomorphism, which can be used to predict the probability density function of\ndirect numerical simulations. These results rekindle Hopf's aspiration of\nelucidating turbulence through the study of recurrent patterns.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematically established chaos in fluid dynamics: recurrent patterns forecast statistics\",\"authors\":\"Baoying Wang, Roger Ayats, Kengo Deguchi, Alvaro Meseguer, Fernando Mellibovsky\",\"doi\":\"arxiv-2409.09234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse in the Taylor-Couette system, a canonical flow that has been\\nstudied extensively for over a century, a parameter regime exhibiting dynamics\\nthat can be approximated by a simple discrete map. The map has exceptionally\\nneat mathematical properties, allowing to prove its chaotic nature as well as\\nthe existence of infinitely many unstable periodic orbits. Remarkably, the\\nfluid system and the discrete map share a common catalog of unstable periodic\\nsolutions with the tent map, a clear indication of topological conjugacy. A\\nsufficient number of these solutions enables the construction of a conjugacy\\nhomeomorphism, which can be used to predict the probability density function of\\ndirect numerical simulations. These results rekindle Hopf's aspiration of\\nelucidating turbulence through the study of recurrent patterns.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了泰勒-库埃特(Taylor-Couette)系统--一个世纪以来被广泛研究的典型流动--中的一个参数机制,该机制表现出的动态可以用一个简单的离散映射来近似。该映射具有异常微妙的数学特性,可以证明其混沌性质以及无限多不稳定周期轨道的存在。值得注意的是,流体系统和离散映射与帐篷映射有着共同的不稳定周期解目录,这是拓扑共轭的一个明显迹象。有了足够数量的这些解,就可以构建共轭同构,并用它来预测直接数值模拟的概率密度函数。这些结果重新点燃了霍普夫通过研究反复出现的模式来阐明湍流的愿望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematically established chaos in fluid dynamics: recurrent patterns forecast statistics
We analyse in the Taylor-Couette system, a canonical flow that has been studied extensively for over a century, a parameter regime exhibiting dynamics that can be approximated by a simple discrete map. The map has exceptionally neat mathematical properties, allowing to prove its chaotic nature as well as the existence of infinitely many unstable periodic orbits. Remarkably, the fluid system and the discrete map share a common catalog of unstable periodic solutions with the tent map, a clear indication of topological conjugacy. A sufficient number of these solutions enables the construction of a conjugacy homeomorphism, which can be used to predict the probability density function of direct numerical simulations. These results rekindle Hopf's aspiration of elucidating turbulence through the study of recurrent patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信