内存增强型量子存储库计算

J. Settino, L. Salatino, L. Mariani, M. Channab, L. Bozzolo, S. Vallisa, P. Barillà, A. Policicchio, N. Lo Gullo, A. Giordano, C. Mastroianni, F. Plastina
{"title":"内存增强型量子存储库计算","authors":"J. Settino, L. Salatino, L. Mariani, M. Channab, L. Bozzolo, S. Vallisa, P. Barillà, A. Policicchio, N. Lo Gullo, A. Giordano, C. Mastroianni, F. Plastina","doi":"arxiv-2409.09886","DOIUrl":null,"url":null,"abstract":"Reservoir computing (RC) is an effective method for predicting chaotic\nsystems by using a high-dimensional dynamic reservoir with fixed internal\nweights, while keeping the learning phase linear, which simplifies training and\nreduces computational complexity compared to fully trained recurrent neural\nnetworks (RNNs). Quantum reservoir computing (QRC) uses the exponential growth\nof Hilbert spaces in quantum systems, allowing for greater information\nprocessing, memory capacity, and computational power. However, the original QRC\nproposal requires coherent injection of inputs multiple times, complicating\npractical implementation. We present a hybrid quantum-classical approach that\nimplements memory through classical post-processing of quantum measurements.\nThis approach avoids the need for multiple coherent input injections and is\nevaluated on benchmark tasks, including the chaotic Mackey-Glass time series\nprediction. We tested our model on two physical platforms: a fully connected\nIsing model and a Rydberg atom array. The optimized model demonstrates\npromising predictive capabilities, achieving a higher number of steps compared\nto previously reported approaches.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory-Augmented Quantum Reservoir Computing\",\"authors\":\"J. Settino, L. Salatino, L. Mariani, M. Channab, L. Bozzolo, S. Vallisa, P. Barillà, A. Policicchio, N. Lo Gullo, A. Giordano, C. Mastroianni, F. Plastina\",\"doi\":\"arxiv-2409.09886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoir computing (RC) is an effective method for predicting chaotic\\nsystems by using a high-dimensional dynamic reservoir with fixed internal\\nweights, while keeping the learning phase linear, which simplifies training and\\nreduces computational complexity compared to fully trained recurrent neural\\nnetworks (RNNs). Quantum reservoir computing (QRC) uses the exponential growth\\nof Hilbert spaces in quantum systems, allowing for greater information\\nprocessing, memory capacity, and computational power. However, the original QRC\\nproposal requires coherent injection of inputs multiple times, complicating\\npractical implementation. We present a hybrid quantum-classical approach that\\nimplements memory through classical post-processing of quantum measurements.\\nThis approach avoids the need for multiple coherent input injections and is\\nevaluated on benchmark tasks, including the chaotic Mackey-Glass time series\\nprediction. We tested our model on two physical platforms: a fully connected\\nIsing model and a Rydberg atom array. The optimized model demonstrates\\npromising predictive capabilities, achieving a higher number of steps compared\\nto previously reported approaches.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

储层计算(RC)是预测混沌系统的一种有效方法,它使用具有固定内部权重的高维动态储层,同时保持学习阶段的线性,与完全训练的递归神经网络(RNN)相比,简化了训练并降低了计算复杂度。量子贮库计算(QRC)利用量子系统中希尔伯特空间的指数增长,实现了更大的信息处理能力、内存容量和计算能力。然而,最初的 QRC 提议需要多次相干注入输入,这使得实际实施变得复杂。我们提出了一种量子-古典混合方法,通过对量子测量进行古典后处理来实现记忆。这种方法避免了多次相干输入的需要,并在包括混沌麦基-格拉斯时间序列预测在内的基准任务上进行了评估。我们在两个物理平台上测试了我们的模型:一个全连接 Ising 模型和一个 Rydberg 原子阵列。优化后的模型展示了令人满意的预测能力,与之前报道的方法相比,实现了更高的步数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory-Augmented Quantum Reservoir Computing
Reservoir computing (RC) is an effective method for predicting chaotic systems by using a high-dimensional dynamic reservoir with fixed internal weights, while keeping the learning phase linear, which simplifies training and reduces computational complexity compared to fully trained recurrent neural networks (RNNs). Quantum reservoir computing (QRC) uses the exponential growth of Hilbert spaces in quantum systems, allowing for greater information processing, memory capacity, and computational power. However, the original QRC proposal requires coherent injection of inputs multiple times, complicating practical implementation. We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements. This approach avoids the need for multiple coherent input injections and is evaluated on benchmark tasks, including the chaotic Mackey-Glass time series prediction. We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array. The optimized model demonstrates promising predictive capabilities, achieving a higher number of steps compared to previously reported approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信