{"title":"具有准周期初始数据的高维度弱非线性薛定谔方程","authors":"Fei XuJilin University","doi":"arxiv-2409.10006","DOIUrl":null,"url":null,"abstract":"In this paper, under the exponential/polynomial decay condition in Fourier\nspace, we prove that the nonlinear solution to the quasi-periodic Cauchy\nproblem for the weakly nonlinear Schr\\\"odinger equation in higher dimensions\nwill asymptotically approach the associated linear solution within a specific\ntime scale. The proof is based on a combinatorial analysis method. Our results\nand methods work for {\\em arbitrary} space dimensions and focusing/defocusing\n{\\em arbitrary} power-law nonlinearities.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weakly Nonlinear Schrödinger Equation in Higher Dimensions with Quasi-periodic Initial Data\",\"authors\":\"Fei XuJilin University\",\"doi\":\"arxiv-2409.10006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, under the exponential/polynomial decay condition in Fourier\\nspace, we prove that the nonlinear solution to the quasi-periodic Cauchy\\nproblem for the weakly nonlinear Schr\\\\\\\"odinger equation in higher dimensions\\nwill asymptotically approach the associated linear solution within a specific\\ntime scale. The proof is based on a combinatorial analysis method. Our results\\nand methods work for {\\\\em arbitrary} space dimensions and focusing/defocusing\\n{\\\\em arbitrary} power-law nonlinearities.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Weakly Nonlinear Schrödinger Equation in Higher Dimensions with Quasi-periodic Initial Data
In this paper, under the exponential/polynomial decay condition in Fourier
space, we prove that the nonlinear solution to the quasi-periodic Cauchy
problem for the weakly nonlinear Schr\"odinger equation in higher dimensions
will asymptotically approach the associated linear solution within a specific
time scale. The proof is based on a combinatorial analysis method. Our results
and methods work for {\em arbitrary} space dimensions and focusing/defocusing
{\em arbitrary} power-law nonlinearities.