具有准周期初始数据的高维度弱非线性薛定谔方程

Fei XuJilin University
{"title":"具有准周期初始数据的高维度弱非线性薛定谔方程","authors":"Fei XuJilin University","doi":"arxiv-2409.10006","DOIUrl":null,"url":null,"abstract":"In this paper, under the exponential/polynomial decay condition in Fourier\nspace, we prove that the nonlinear solution to the quasi-periodic Cauchy\nproblem for the weakly nonlinear Schr\\\"odinger equation in higher dimensions\nwill asymptotically approach the associated linear solution within a specific\ntime scale. The proof is based on a combinatorial analysis method. Our results\nand methods work for {\\em arbitrary} space dimensions and focusing/defocusing\n{\\em arbitrary} power-law nonlinearities.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weakly Nonlinear Schrödinger Equation in Higher Dimensions with Quasi-periodic Initial Data\",\"authors\":\"Fei XuJilin University\",\"doi\":\"arxiv-2409.10006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, under the exponential/polynomial decay condition in Fourier\\nspace, we prove that the nonlinear solution to the quasi-periodic Cauchy\\nproblem for the weakly nonlinear Schr\\\\\\\"odinger equation in higher dimensions\\nwill asymptotically approach the associated linear solution within a specific\\ntime scale. The proof is based on a combinatorial analysis method. Our results\\nand methods work for {\\\\em arbitrary} space dimensions and focusing/defocusing\\n{\\\\em arbitrary} power-law nonlinearities.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,在傅里叶空间的指数/对数衰减条件下,我们证明了弱非线性薛定谔方程在高维的准周期考奇问题的非线性解将在特定时间尺度内渐近于相关的线性解。证明基于组合分析方法。我们的结果和方法适用于{em arbitrary}空间维数和聚焦/去聚焦{em arbitrary}幂律非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weakly Nonlinear Schrödinger Equation in Higher Dimensions with Quasi-periodic Initial Data
In this paper, under the exponential/polynomial decay condition in Fourier space, we prove that the nonlinear solution to the quasi-periodic Cauchy problem for the weakly nonlinear Schr\"odinger equation in higher dimensions will asymptotically approach the associated linear solution within a specific time scale. The proof is based on a combinatorial analysis method. Our results and methods work for {\em arbitrary} space dimensions and focusing/defocusing {\em arbitrary} power-law nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信