{"title":"两个 q$ 变形的故事:连接对偶极空间和加权超立方体","authors":"Pierre-Antoine Bernard, Étienne Poliquin, Luc Vinet","doi":"arxiv-2409.11243","DOIUrl":null,"url":null,"abstract":"Two $q$-analogs of the hypercube graph are introduced and shown to be related\nthrough a graph quotient. The roles of the subspace lattice graph, of a twisted\nprimitive elements of $U_q(\\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk\npolynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tale of two $q$-deformations : connecting dual polar spaces and weighted hypercubes\",\"authors\":\"Pierre-Antoine Bernard, Étienne Poliquin, Luc Vinet\",\"doi\":\"arxiv-2409.11243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two $q$-analogs of the hypercube graph are introduced and shown to be related\\nthrough a graph quotient. The roles of the subspace lattice graph, of a twisted\\nprimitive elements of $U_q(\\\\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk\\npolynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A tale of two $q$-deformations : connecting dual polar spaces and weighted hypercubes
Two $q$-analogs of the hypercube graph are introduced and shown to be related
through a graph quotient. The roles of the subspace lattice graph, of a twisted
primitive elements of $U_q(\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk
polynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.