两个 q$ 变形的故事:连接对偶极空间和加权超立方体

Pierre-Antoine Bernard, Étienne Poliquin, Luc Vinet
{"title":"两个 q$ 变形的故事:连接对偶极空间和加权超立方体","authors":"Pierre-Antoine Bernard, Étienne Poliquin, Luc Vinet","doi":"arxiv-2409.11243","DOIUrl":null,"url":null,"abstract":"Two $q$-analogs of the hypercube graph are introduced and shown to be related\nthrough a graph quotient. The roles of the subspace lattice graph, of a twisted\nprimitive elements of $U_q(\\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk\npolynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tale of two $q$-deformations : connecting dual polar spaces and weighted hypercubes\",\"authors\":\"Pierre-Antoine Bernard, Étienne Poliquin, Luc Vinet\",\"doi\":\"arxiv-2409.11243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two $q$-analogs of the hypercube graph are introduced and shown to be related\\nthrough a graph quotient. The roles of the subspace lattice graph, of a twisted\\nprimitive elements of $U_q(\\\\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk\\npolynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入了超立方图的两个 $q$ 类似图,并证明它们通过图商而相关。本文详细阐述了子空间网格图、$U_q(\mathfrak{su}(2))$ 的扭曲原始元素以及对偶 $q$-Krawtchoukpolynomials 的作用。本文献给汤姆-科恩温德 (Tom Koornwinder)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tale of two $q$-deformations : connecting dual polar spaces and weighted hypercubes
Two $q$-analogs of the hypercube graph are introduced and shown to be related through a graph quotient. The roles of the subspace lattice graph, of a twisted primitive elements of $U_q(\mathfrak{su}(2))$ and of the dual $q$-Krawtchouk polynomials are elaborated upon. This paper is dedicated to Tom Koornwinder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信