挤压驱动参数振荡器的刘维利对称性

Francesco Iachello, Colin V. Coane, Jayameenakshi Venkatraman
{"title":"挤压驱动参数振荡器的刘维利对称性","authors":"Francesco Iachello, Colin V. Coane, Jayameenakshi Venkatraman","doi":"arxiv-2409.10744","DOIUrl":null,"url":null,"abstract":"We study the symmetries of the Liouville superoperator of one dimensional\nparametric oscillators, especially the so-called squeeze-driven Kerr\noscillator, and discover a remarkable quasi-spin symmetry $su(2)$ at integer\nvalues of the ratio $\\eta =\\omega /K$ of the detuning parameter $\\omega$ to the\nKerr coefficient $K$, which reflects the symmetry previously found for the\nHamiltonian operator. We find that the Liouvillian of an $su(2)$ representation\n$\\left\\vert j,m_{j}\\right\\rangle$ has a characteristic double-ellipsoidal\nstructure, and calculate the relaxation time $T_{X}$ for this structure. We\nthen study the phase transitions of the Liouvillian which occur as a function\nof the parameters $\\xi =\\varepsilon _{2}/K$ and $\\eta=\\omega /K$. Finally, we\nstudy the temperature dependence of the spectrum of eigenvalues of the\nLiouvillian. Our findings may have applications in the generation and\nstabilization of states of interest in quantum computing.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries of Liouvillians of squeeze-driven parametric oscillators\",\"authors\":\"Francesco Iachello, Colin V. Coane, Jayameenakshi Venkatraman\",\"doi\":\"arxiv-2409.10744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the symmetries of the Liouville superoperator of one dimensional\\nparametric oscillators, especially the so-called squeeze-driven Kerr\\noscillator, and discover a remarkable quasi-spin symmetry $su(2)$ at integer\\nvalues of the ratio $\\\\eta =\\\\omega /K$ of the detuning parameter $\\\\omega$ to the\\nKerr coefficient $K$, which reflects the symmetry previously found for the\\nHamiltonian operator. We find that the Liouvillian of an $su(2)$ representation\\n$\\\\left\\\\vert j,m_{j}\\\\right\\\\rangle$ has a characteristic double-ellipsoidal\\nstructure, and calculate the relaxation time $T_{X}$ for this structure. We\\nthen study the phase transitions of the Liouvillian which occur as a function\\nof the parameters $\\\\xi =\\\\varepsilon _{2}/K$ and $\\\\eta=\\\\omega /K$. Finally, we\\nstudy the temperature dependence of the spectrum of eigenvalues of the\\nLiouvillian. Our findings may have applications in the generation and\\nstabilization of states of interest in quantum computing.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一维参数振荡器的刘维尔超算子的对称性,特别是所谓的挤压驱动的凯氏振荡器,并发现了在解谐参数$\omega$与凯氏系数$K$的比值$\eta =\omega/K$的整数处有一个显著的准自旋对称性$su(2)$,这反映了之前发现的哈密尔顿算子的对称性。我们发现$su(2)$表示$left\vert j,m_{j}\right\rangle$ 的Liouvillian具有特征性的双椭圆结构,并计算了这种结构的弛豫时间$T_{X}$。然后研究了作为参数 $\xi =\varepsilon _{2}/K$ 和 $\eta=\omega /K$ 的函数而发生的 Liouvillian 相变。最后,我们研究了Liouvillian特征值谱的温度依赖性。我们的发现可能会应用于量子计算中感兴趣的状态的产生和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries of Liouvillians of squeeze-driven parametric oscillators
We study the symmetries of the Liouville superoperator of one dimensional parametric oscillators, especially the so-called squeeze-driven Kerr oscillator, and discover a remarkable quasi-spin symmetry $su(2)$ at integer values of the ratio $\eta =\omega /K$ of the detuning parameter $\omega$ to the Kerr coefficient $K$, which reflects the symmetry previously found for the Hamiltonian operator. We find that the Liouvillian of an $su(2)$ representation $\left\vert j,m_{j}\right\rangle$ has a characteristic double-ellipsoidal structure, and calculate the relaxation time $T_{X}$ for this structure. We then study the phase transitions of the Liouvillian which occur as a function of the parameters $\xi =\varepsilon _{2}/K$ and $\eta=\omega /K$. Finally, we study the temperature dependence of the spectrum of eigenvalues of the Liouvillian. Our findings may have applications in the generation and stabilization of states of interest in quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信