超立方体、$n$基元和混合物

Marcelo Epstein
{"title":"超立方体、$n$基元和混合物","authors":"Marcelo Epstein","doi":"arxiv-2409.10730","DOIUrl":null,"url":null,"abstract":"The theory of composite mixtures consisting of $n$ constituents is framed\nwithin the schema provided by the notion of $n$-groupoid. The point of\ndeparture is the analysis of $n$-dimensional hypercubes and their skeletons, to\neach of whose edges an element (an arrow) of one of $n$ given material\ngroupoids is assigned according to the coordinate class to which it belongs. In\nthis way a $GL(3,{\\mathbb R})$-weighted digraph is obtained. It is shown that\nif the double groupoid associated with each pair of constituents consists of\ncommuting squares, the resulting $n$-groupoid is conservative. The core of this\n$n$-groupoid is transitive if, and only if, the mixture is materially uniform.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercubes, $n$-groupoids, and mixtures\",\"authors\":\"Marcelo Epstein\",\"doi\":\"arxiv-2409.10730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of composite mixtures consisting of $n$ constituents is framed\\nwithin the schema provided by the notion of $n$-groupoid. The point of\\ndeparture is the analysis of $n$-dimensional hypercubes and their skeletons, to\\neach of whose edges an element (an arrow) of one of $n$ given material\\ngroupoids is assigned according to the coordinate class to which it belongs. In\\nthis way a $GL(3,{\\\\mathbb R})$-weighted digraph is obtained. It is shown that\\nif the double groupoid associated with each pair of constituents consists of\\ncommuting squares, the resulting $n$-groupoid is conservative. The core of this\\n$n$-groupoid is transitive if, and only if, the mixture is materially uniform.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由 $n$ 组元组成的复合混合物理论是在 $n$ 组元概念所提供的模式下构建的。其出发点是对 $n$ 维超立方体及其骨架的分析,根据其所属的坐标类,为其每条边上的 $n$ 个给定物质基元中的一个基元(箭头)赋值。这样就得到了$GL(3,{\mathbb R})$加权数图。研究表明,如果与每对成分相关联的双元组由交换正方形组成,那么得到的 $n$ 元元组是保守的。当且仅当混合物是物质均匀的时候,这个$n$-groupoid 的核心是传递的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypercubes, $n$-groupoids, and mixtures
The theory of composite mixtures consisting of $n$ constituents is framed within the schema provided by the notion of $n$-groupoid. The point of departure is the analysis of $n$-dimensional hypercubes and their skeletons, to each of whose edges an element (an arrow) of one of $n$ given material groupoids is assigned according to the coordinate class to which it belongs. In this way a $GL(3,{\mathbb R})$-weighted digraph is obtained. It is shown that if the double groupoid associated with each pair of constituents consists of commuting squares, the resulting $n$-groupoid is conservative. The core of this $n$-groupoid is transitive if, and only if, the mixture is materially uniform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信