基于密度泛函理论的维格纳基态计算梯度流模型

Guanghui Hu, Ruo Li, Hongfei Zhan
{"title":"基于密度泛函理论的维格纳基态计算梯度流模型","authors":"Guanghui Hu, Ruo Li, Hongfei Zhan","doi":"arxiv-2409.10851","DOIUrl":null,"url":null,"abstract":"In this paper, a gradient flow model is proposed for conducting ground state\ncalculations in Wigner formalism of many-body system in the framework of\ndensity functional theory. More specifically, an energy functional for the\nground state in Wigner formalism is proposed to provide a new perspective for\nground state calculations of the Wigner function. Employing density functional\ntheory, a gradient flow model is designed based on the energy functional to\nobtain the ground state Wigner function representing the whole many-body\nsystem. Subsequently, an efficient algorithm is developed using the operator\nsplitting method and the Fourier spectral collocation method, whose numerical\ncomplexity of single iteration is $O(n_{\\rm DoF}\\log n_{\\rm DoF})$. Numerical\nexperiments demonstrate the anticipated accuracy, encompassing the\none-dimensional system with up to $2^{21}$ particles and the three-dimensional\nsystem with defect, showcasing the potential of our approach to large-scale\nsimulations and computations of systems with defect.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient flow model for ground state calculations in Wigner formalism based on density functional theory\",\"authors\":\"Guanghui Hu, Ruo Li, Hongfei Zhan\",\"doi\":\"arxiv-2409.10851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a gradient flow model is proposed for conducting ground state\\ncalculations in Wigner formalism of many-body system in the framework of\\ndensity functional theory. More specifically, an energy functional for the\\nground state in Wigner formalism is proposed to provide a new perspective for\\nground state calculations of the Wigner function. Employing density functional\\ntheory, a gradient flow model is designed based on the energy functional to\\nobtain the ground state Wigner function representing the whole many-body\\nsystem. Subsequently, an efficient algorithm is developed using the operator\\nsplitting method and the Fourier spectral collocation method, whose numerical\\ncomplexity of single iteration is $O(n_{\\\\rm DoF}\\\\log n_{\\\\rm DoF})$. Numerical\\nexperiments demonstrate the anticipated accuracy, encompassing the\\none-dimensional system with up to $2^{21}$ particles and the three-dimensional\\nsystem with defect, showcasing the potential of our approach to large-scale\\nsimulations and computations of systems with defect.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种梯度流模型,用于在密度泛函理论框架内进行多体系统的维格纳形式主义基态计算。更具体地说,本文提出了维格纳形式主义中基态的能量函数,为维格纳函数的基态计算提供了一个新的视角。运用密度泛函理论,设计了一个基于能量函数的梯度流模型,以获得代表整个多体系统的基态维格纳函数。随后,利用算子分割法和傅立叶谱配位法建立了一种高效算法,其单次迭代的数值复杂度为$O(n_{\rm DoF}\log n_{\rm DoF})$。数值实验证明了预期的精度,包括多达 2^{21}$ 粒子的一维系统和带缺陷的三维系统,展示了我们的方法在带缺陷系统的大尺度模拟和计算中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gradient flow model for ground state calculations in Wigner formalism based on density functional theory
In this paper, a gradient flow model is proposed for conducting ground state calculations in Wigner formalism of many-body system in the framework of density functional theory. More specifically, an energy functional for the ground state in Wigner formalism is proposed to provide a new perspective for ground state calculations of the Wigner function. Employing density functional theory, a gradient flow model is designed based on the energy functional to obtain the ground state Wigner function representing the whole many-body system. Subsequently, an efficient algorithm is developed using the operator splitting method and the Fourier spectral collocation method, whose numerical complexity of single iteration is $O(n_{\rm DoF}\log n_{\rm DoF})$. Numerical experiments demonstrate the anticipated accuracy, encompassing the one-dimensional system with up to $2^{21}$ particles and the three-dimensional system with defect, showcasing the potential of our approach to large-scale simulations and computations of systems with defect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信