关于傅立叶分析和学习理论的三场讲座

Haonan Zhang
{"title":"关于傅立叶分析和学习理论的三场讲座","authors":"Haonan Zhang","doi":"arxiv-2409.10886","DOIUrl":null,"url":null,"abstract":"Fourier analysis on the discrete hypercubes $\\{-1,1\\}^n$ has found numerous\napplications in learning theory. A recent breakthrough involves the use of a\nclassical result from Fourier analysis, the Bohnenblust--Hille inequality, in\nthe context of learning low-degree Boolean functions. In these lecture notes,\nwe explore this line of research and discuss recent progress in discrete\nquantum systems and classical Fourier analysis.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three lectures on Fourier analysis and learning theory\",\"authors\":\"Haonan Zhang\",\"doi\":\"arxiv-2409.10886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fourier analysis on the discrete hypercubes $\\\\{-1,1\\\\}^n$ has found numerous\\napplications in learning theory. A recent breakthrough involves the use of a\\nclassical result from Fourier analysis, the Bohnenblust--Hille inequality, in\\nthe context of learning low-degree Boolean functions. In these lecture notes,\\nwe explore this line of research and discuss recent progress in discrete\\nquantum systems and classical Fourier analysis.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离散超立方$\{-1,1\}^n$上的傅立叶分析在学习理论中有着大量的应用。最近的一个突破是在学习低度布尔函数的背景下使用了傅里叶分析的经典结果,即 Bohnenblust--Hille 不等式。在这些讲座笔记中,我们探讨了这一研究方向,并讨论了离散量子系统和经典傅立叶分析的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three lectures on Fourier analysis and learning theory
Fourier analysis on the discrete hypercubes $\{-1,1\}^n$ has found numerous applications in learning theory. A recent breakthrough involves the use of a classical result from Fourier analysis, the Bohnenblust--Hille inequality, in the context of learning low-degree Boolean functions. In these lecture notes, we explore this line of research and discuss recent progress in discrete quantum systems and classical Fourier analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信