具有各向异性势能的紧密结合网格中的平带

Arindam Mallick, Alexei Andreanov
{"title":"具有各向异性势能的紧密结合网格中的平带","authors":"Arindam Mallick, Alexei Andreanov","doi":"arxiv-2409.11336","DOIUrl":null,"url":null,"abstract":"We consider tight-binding models on Bravais lattices with anisotropic onsite\npotentials that vary along a given direction and are constant along the\ntransverse one. Inspired by our previous work on flatbands in\nanti-$\\mathcal{PT}$ symmetric Hamiltonians [Phys. Rev. A 105, L021305 (2022)],\nwe construct an anti-$\\mathcal{PT}$ symmetric Hamiltonians with an $E=0$\nflatband by tuning the hoppings and the shapes of potentials. This construction\nis illustrated for the square lattice with bounded and unbounded potentials.\nUnlike flatbands in short-ranged translationally invariant Hamiltonians, we\nconjecture that the considered $E=0$ flatbands do not host compact localized\nstates. Instead the flatband eigenstates exhibit a localization transition\nalong the potential direction upon increasing the potential strength for\nbounded potentials. For unbounded potentials flatband eigenstates are always\nlocalized irrespective of the potential strength.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flatbands in tight-binding lattices with anisotropic potentials\",\"authors\":\"Arindam Mallick, Alexei Andreanov\",\"doi\":\"arxiv-2409.11336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider tight-binding models on Bravais lattices with anisotropic onsite\\npotentials that vary along a given direction and are constant along the\\ntransverse one. Inspired by our previous work on flatbands in\\nanti-$\\\\mathcal{PT}$ symmetric Hamiltonians [Phys. Rev. A 105, L021305 (2022)],\\nwe construct an anti-$\\\\mathcal{PT}$ symmetric Hamiltonians with an $E=0$\\nflatband by tuning the hoppings and the shapes of potentials. This construction\\nis illustrated for the square lattice with bounded and unbounded potentials.\\nUnlike flatbands in short-ranged translationally invariant Hamiltonians, we\\nconjecture that the considered $E=0$ flatbands do not host compact localized\\nstates. Instead the flatband eigenstates exhibit a localization transition\\nalong the potential direction upon increasing the potential strength for\\nbounded potentials. For unbounded potentials flatband eigenstates are always\\nlocalized irrespective of the potential strength.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是布拉维网格上的紧约束模型,它的各向异性原位势沿给定方向变化,沿横向不变。受我们之前关于反$\mathcal{PT}$对称哈密顿的平带的工作[Phys. Rev. A 105, L021305 (2022)]的启发,我们通过调整电势的跳跃和形状,构造了一个具有$E=0$平带的反(anti-$\mathcal{PT}$)对称哈密顿。与短程平移不变哈密顿中的平带不同,我们猜想所考虑的$E=0$平带并不承载紧凑的局部化态。相反,当有界电势的电势强度增大时,平带特征状态会沿着电势方向出现局部过渡。对于无约束电势,无论电势强度如何,平带特征状态始终是局域化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flatbands in tight-binding lattices with anisotropic potentials
We consider tight-binding models on Bravais lattices with anisotropic onsite potentials that vary along a given direction and are constant along the transverse one. Inspired by our previous work on flatbands in anti-$\mathcal{PT}$ symmetric Hamiltonians [Phys. Rev. A 105, L021305 (2022)], we construct an anti-$\mathcal{PT}$ symmetric Hamiltonians with an $E=0$ flatband by tuning the hoppings and the shapes of potentials. This construction is illustrated for the square lattice with bounded and unbounded potentials. Unlike flatbands in short-ranged translationally invariant Hamiltonians, we conjecture that the considered $E=0$ flatbands do not host compact localized states. Instead the flatband eigenstates exhibit a localization transition along the potential direction upon increasing the potential strength for bounded potentials. For unbounded potentials flatband eigenstates are always localized irrespective of the potential strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信