$mathrm{U}(1)^{n}$ 切尔-西蒙斯理论:分割函数、互易公式和 CS-二重性

Han-Miru Kim, Philippe Mathieu, Michail Tagaris, Frank Thuillier
{"title":"$mathrm{U}(1)^{n}$ 切尔-西蒙斯理论:分割函数、互易公式和 CS-二重性","authors":"Han-Miru Kim, Philippe Mathieu, Michail Tagaris, Frank Thuillier","doi":"arxiv-2409.10734","DOIUrl":null,"url":null,"abstract":"The $\\mathrm{U}(1)$ Chern-Simons theory can be extended to a topological\n$\\mathrm{U}(1)^n$ theory by taking a combination of Chern-Simons and BF\nactions, the mixing being achieved with the help of a collection of integer\ncoupling constants. Based on the Deligne-Beilinson cohomology, a partition\nfunction can then be computed for such a $\\mathrm{U}(1)^n$ Chern-Simons theory.\nThis partition function is clearly a topological invariant of the closed\noriented $3$-manifold on which the theory is defined. Then, by applying a\nreciprocity formula a new expression of this invariant is obtained which should\nbe a Reshetikhin-Turaev invariant. Finally, a duality between $\\mathrm{U}(1)^n$\nChern-Simons theories is demonstrated.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathrm{U}(1)^{n}$ Chern-Simons theory: partition function, reciprocity formula and CS-duality\",\"authors\":\"Han-Miru Kim, Philippe Mathieu, Michail Tagaris, Frank Thuillier\",\"doi\":\"arxiv-2409.10734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\mathrm{U}(1)$ Chern-Simons theory can be extended to a topological\\n$\\\\mathrm{U}(1)^n$ theory by taking a combination of Chern-Simons and BF\\nactions, the mixing being achieved with the help of a collection of integer\\ncoupling constants. Based on the Deligne-Beilinson cohomology, a partition\\nfunction can then be computed for such a $\\\\mathrm{U}(1)^n$ Chern-Simons theory.\\nThis partition function is clearly a topological invariant of the closed\\noriented $3$-manifold on which the theory is defined. Then, by applying a\\nreciprocity formula a new expression of this invariant is obtained which should\\nbe a Reshetikhin-Turaev invariant. Finally, a duality between $\\\\mathrm{U}(1)^n$\\nChern-Simons theories is demonstrated.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\mathrm{U}(1)$钱尔恩-西蒙斯理论可以通过钱尔恩-西蒙斯和BF作用的组合扩展为拓扑$\mathrm{U}(1)^n$理论,而这种混合是在一系列整数耦合常数的帮助下实现的。基于德利尼-贝林森同调,可以计算出这样一个$\mathrm{U}(1)^n$ Chern-Simons理论的分区函数。然后,通过应用areciprocity公式得到了这个不变量的新表达式,它应该是一个雷谢提金-图拉耶夫不变量。最后,证明了$\mathrm{U}(1)^n$切恩-西蒙斯理论之间的对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathrm{U}(1)^{n}$ Chern-Simons theory: partition function, reciprocity formula and CS-duality
The $\mathrm{U}(1)$ Chern-Simons theory can be extended to a topological $\mathrm{U}(1)^n$ theory by taking a combination of Chern-Simons and BF actions, the mixing being achieved with the help of a collection of integer coupling constants. Based on the Deligne-Beilinson cohomology, a partition function can then be computed for such a $\mathrm{U}(1)^n$ Chern-Simons theory. This partition function is clearly a topological invariant of the closed oriented $3$-manifold on which the theory is defined. Then, by applying a reciprocity formula a new expression of this invariant is obtained which should be a Reshetikhin-Turaev invariant. Finally, a duality between $\mathrm{U}(1)^n$ Chern-Simons theories is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信