良好布辛斯方程除数的渐近性

Andrey Badanin, Andrey Badanin
{"title":"良好布辛斯方程除数的渐近性","authors":"Andrey Badanin, Andrey Badanin","doi":"arxiv-2409.10988","DOIUrl":null,"url":null,"abstract":"We consider a third order operator under the three-point Dirichlet condition.\nIts spectrum is the so-called auxiliary spectrum for the good Boussinesq\nequation, as well as the Dirichlet spectrum for the Schr\\\"odinger operator on\nthe unit interval is the auxiliary spectrum for the periodic KdV equation. The\nauxiliary spectrum is formed by projections of the points of the divisor onto\nthe spectral plane. We estimate the spectrum and the corresponding norming\nconstants in terms of small operator coefficients. This work is the first in a\nseries of papers devoted to solving the inverse problem for the Boussinesq\nequation.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the divisor for the good Boussinesq equation\",\"authors\":\"Andrey Badanin, Andrey Badanin\",\"doi\":\"arxiv-2409.10988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a third order operator under the three-point Dirichlet condition.\\nIts spectrum is the so-called auxiliary spectrum for the good Boussinesq\\nequation, as well as the Dirichlet spectrum for the Schr\\\\\\\"odinger operator on\\nthe unit interval is the auxiliary spectrum for the periodic KdV equation. The\\nauxiliary spectrum is formed by projections of the points of the divisor onto\\nthe spectral plane. We estimate the spectrum and the corresponding norming\\nconstants in terms of small operator coefficients. This work is the first in a\\nseries of papers devoted to solving the inverse problem for the Boussinesq\\nequation.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是三点 Dirichlet 条件下的三阶算子。它的谱是所谓的良好 Boussinesqequation 的辅助谱,就像单位区间上 Schr\"odinger 算子的 Dirichlet 谱是周期 KdV 方程的辅助谱一样。辅助谱是由除数点在谱面上的投影形成的。我们用小算子系数来估计频谱和相应的规范化常数。这项工作是专门解决 Boussinesq 方程逆问题的系列论文中的第一篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of the divisor for the good Boussinesq equation
We consider a third order operator under the three-point Dirichlet condition. Its spectrum is the so-called auxiliary spectrum for the good Boussinesq equation, as well as the Dirichlet spectrum for the Schr\"odinger operator on the unit interval is the auxiliary spectrum for the periodic KdV equation. The auxiliary spectrum is formed by projections of the points of the divisor onto the spectral plane. We estimate the spectrum and the corresponding norming constants in terms of small operator coefficients. This work is the first in a series of papers devoted to solving the inverse problem for the Boussinesq equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信