{"title":"一参数 Calabi-Yau 三褶的高属 Gromov-Witten 理论 I:多项式性","authors":"Patrick Lei","doi":"arxiv-2409.11659","DOIUrl":null,"url":null,"abstract":"We prove the finite generation conjecture of arXiv:hep-th/0406078 for the\nGromov-Witten potentials of the Calabi-Yau hypersurfaces $Z_6 \\subset\n\\mathbb{P}(1,1,1,1,2)$, $Z_8 \\subset \\mathbb{P}(1,1,1,1,4)$, and $Z_{10}\n\\subset \\mathbb{P}(1,1,1,2,5)$ using the theory of MSP fields.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-genus Gromov-Witten theory of one-parameter Calabi-Yau threefolds I: Polynomiality\",\"authors\":\"Patrick Lei\",\"doi\":\"arxiv-2409.11659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the finite generation conjecture of arXiv:hep-th/0406078 for the\\nGromov-Witten potentials of the Calabi-Yau hypersurfaces $Z_6 \\\\subset\\n\\\\mathbb{P}(1,1,1,1,2)$, $Z_8 \\\\subset \\\\mathbb{P}(1,1,1,1,4)$, and $Z_{10}\\n\\\\subset \\\\mathbb{P}(1,1,1,2,5)$ using the theory of MSP fields.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher-genus Gromov-Witten theory of one-parameter Calabi-Yau threefolds I: Polynomiality
We prove the finite generation conjecture of arXiv:hep-th/0406078 for the
Gromov-Witten potentials of the Calabi-Yau hypersurfaces $Z_6 \subset
\mathbb{P}(1,1,1,1,2)$, $Z_8 \subset \mathbb{P}(1,1,1,1,4)$, and $Z_{10}
\subset \mathbb{P}(1,1,1,2,5)$ using the theory of MSP fields.