从代差分出发的壳外色彩运动学对偶性

Maor Ben-Shahar, Francesco Bonechi, Maxim Zabzine
{"title":"从代差分出发的壳外色彩运动学对偶性","authors":"Maor Ben-Shahar, Francesco Bonechi, Maxim Zabzine","doi":"arxiv-2409.11484","DOIUrl":null,"url":null,"abstract":"We examine the color-kinematics duality within the BV formalism, highlighting\nits emergence as a feature of specific gauge-fixed actions. Our goal is to\nestablish a general framework for studying the duality while investigating\nstraightforward examples of off-shell color-kinematics duality. In this\ncontext, we revisit Chern-Simons theory as well as introduce new examples,\nincluding BF theory and 2D Yang-Mills theory, which are shown to exhibit the\nduality off-shell. We emphasize that the geometric structures responsible for\nflat-space color-kinematics duality appear for general curved spaces as well.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-shell color-kinematics duality from codifferentials\",\"authors\":\"Maor Ben-Shahar, Francesco Bonechi, Maxim Zabzine\",\"doi\":\"arxiv-2409.11484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the color-kinematics duality within the BV formalism, highlighting\\nits emergence as a feature of specific gauge-fixed actions. Our goal is to\\nestablish a general framework for studying the duality while investigating\\nstraightforward examples of off-shell color-kinematics duality. In this\\ncontext, we revisit Chern-Simons theory as well as introduce new examples,\\nincluding BF theory and 2D Yang-Mills theory, which are shown to exhibit the\\nduality off-shell. We emphasize that the geometric structures responsible for\\nflat-space color-kinematics duality appear for general curved spaces as well.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 BV 形式论中的颜色运动学对偶性,强调它是作为特定规规固定作用的特征出现的。我们的目标是建立一个研究对偶性的一般框架,同时研究壳外颜色-运动学对偶性的直接例子。在此背景下,我们重温了切尔-西蒙斯理论,并引入了新的例子,包括 BF 理论和二维杨-米尔斯理论,它们都显示了壳外对偶性。我们强调,导致平面空间颜色-运动学对偶性的几何结构也出现在一般的弯曲空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-shell color-kinematics duality from codifferentials
We examine the color-kinematics duality within the BV formalism, highlighting its emergence as a feature of specific gauge-fixed actions. Our goal is to establish a general framework for studying the duality while investigating straightforward examples of off-shell color-kinematics duality. In this context, we revisit Chern-Simons theory as well as introduce new examples, including BF theory and 2D Yang-Mills theory, which are shown to exhibit the duality off-shell. We emphasize that the geometric structures responsible for flat-space color-kinematics duality appear for general curved spaces as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信