Steffen Mittelmann, Jan Riedlinger, Benedikt Buchner, Thomas Schwarz-Selinger, Matej Mayer, Georg Pretzler
{"title":"超短激光脉冲对钨的烧蚀特性","authors":"Steffen Mittelmann, Jan Riedlinger, Benedikt Buchner, Thomas Schwarz-Selinger, Matej Mayer, Georg Pretzler","doi":"10.1063/5.0222073","DOIUrl":null,"url":null,"abstract":"In approaches to analyze material composition or in processing tasks using ultra-short laser ablation, it is of particular interest how ablated materials are distributed across the solid angle in front of the interaction region. We found that with our sub-10-fs laser in the regime from 1014W/cm2 to 1017W/cm2, the solid angle of the ablation cone decreases significantly along with the laser intensity in a vacuum environment. For this observation, we used ion-beam analysis to investigate the distribution of tungsten collected on silicon catcher plates arranged across the solid angle of the laser-ablation cone. Moreover, we used other post-mortem tools, such as scanning electron microscopy and confocal laser scanning microscopy, to determine the ablation threshold of Fth=468mJ/cm2 of our tungsten samples. Here, clearly, two laser intensity-dependent ablation regimes can be observed in the detection of a crater depth and a ablation cone angle.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ablation characteristics of tungsten with ultra-short laser pulses\",\"authors\":\"Steffen Mittelmann, Jan Riedlinger, Benedikt Buchner, Thomas Schwarz-Selinger, Matej Mayer, Georg Pretzler\",\"doi\":\"10.1063/5.0222073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In approaches to analyze material composition or in processing tasks using ultra-short laser ablation, it is of particular interest how ablated materials are distributed across the solid angle in front of the interaction region. We found that with our sub-10-fs laser in the regime from 1014W/cm2 to 1017W/cm2, the solid angle of the ablation cone decreases significantly along with the laser intensity in a vacuum environment. For this observation, we used ion-beam analysis to investigate the distribution of tungsten collected on silicon catcher plates arranged across the solid angle of the laser-ablation cone. Moreover, we used other post-mortem tools, such as scanning electron microscopy and confocal laser scanning microscopy, to determine the ablation threshold of Fth=468mJ/cm2 of our tungsten samples. Here, clearly, two laser intensity-dependent ablation regimes can be observed in the detection of a crater depth and a ablation cone angle.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222073\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222073","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ablation characteristics of tungsten with ultra-short laser pulses
In approaches to analyze material composition or in processing tasks using ultra-short laser ablation, it is of particular interest how ablated materials are distributed across the solid angle in front of the interaction region. We found that with our sub-10-fs laser in the regime from 1014W/cm2 to 1017W/cm2, the solid angle of the ablation cone decreases significantly along with the laser intensity in a vacuum environment. For this observation, we used ion-beam analysis to investigate the distribution of tungsten collected on silicon catcher plates arranged across the solid angle of the laser-ablation cone. Moreover, we used other post-mortem tools, such as scanning electron microscopy and confocal laser scanning microscopy, to determine the ablation threshold of Fth=468mJ/cm2 of our tungsten samples. Here, clearly, two laser intensity-dependent ablation regimes can be observed in the detection of a crater depth and a ablation cone angle.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces