通过增强 HL-2A 边缘等离子体中的低频带状流样结构减少湍流

IF 3.5 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS
X. Chen, J. Cheng, Y. Xu, L.W. Yan, Q. Zou, Z.H. Huang, J. Chen, L. Liu, W.C. Wang, W. Zhang, N. Wu, C.F. Dong, Z.B. Shi, X.Q. Ji and W.L. Zhong
{"title":"通过增强 HL-2A 边缘等离子体中的低频带状流样结构减少湍流","authors":"X. Chen, J. Cheng, Y. Xu, L.W. Yan, Q. Zou, Z.H. Huang, J. Chen, L. Liu, W.C. Wang, W. Zhang, N. Wu, C.F. Dong, Z.B. Shi, X.Q. Ji and W.L. Zhong","doi":"10.1088/1741-4326/ad7274","DOIUrl":null,"url":null,"abstract":"A low-frequency zonal flow-like (LFZF-like) structure peaking at f ≈ 2.0 kHz has been observed in HL-2A ohmically heated deuterium plasmas using a combined Langmuir probe array. This time-varying potential structure, which has axisymmetric characteristics (n = 0) and a finite radial correlation length (less than 1 cm), was identified to be generated by the three-wave interaction in small-scale turbulence. The results illustrate that the amplitude of the LFZF-like structure dramatically increases with the influence of impurity ions, which is mainly due to the increased strength in the nonlinear energy transfer by the turbulence vortex symmetry-breaking process. Consequently, the enhanced LFZF-like structure has the ability to stabilize the local turbulence via the shearing decorrelation mechanism as demonstrated in this experiment. The observed results given here reveal the essential role played by the LFZF-like structure in the reduction of turbulence levels, which could advance our understanding of the multi-scale physics governing turbulence and the resulting transport in magnetically confined plasmas.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of turbulence by enhanced low-frequency zonal flow-like structures in HL-2A edge plasmas\",\"authors\":\"X. Chen, J. Cheng, Y. Xu, L.W. Yan, Q. Zou, Z.H. Huang, J. Chen, L. Liu, W.C. Wang, W. Zhang, N. Wu, C.F. Dong, Z.B. Shi, X.Q. Ji and W.L. Zhong\",\"doi\":\"10.1088/1741-4326/ad7274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-frequency zonal flow-like (LFZF-like) structure peaking at f ≈ 2.0 kHz has been observed in HL-2A ohmically heated deuterium plasmas using a combined Langmuir probe array. This time-varying potential structure, which has axisymmetric characteristics (n = 0) and a finite radial correlation length (less than 1 cm), was identified to be generated by the three-wave interaction in small-scale turbulence. The results illustrate that the amplitude of the LFZF-like structure dramatically increases with the influence of impurity ions, which is mainly due to the increased strength in the nonlinear energy transfer by the turbulence vortex symmetry-breaking process. Consequently, the enhanced LFZF-like structure has the ability to stabilize the local turbulence via the shearing decorrelation mechanism as demonstrated in this experiment. The observed results given here reveal the essential role played by the LFZF-like structure in the reduction of turbulence levels, which could advance our understanding of the multi-scale physics governing turbulence and the resulting transport in magnetically confined plasmas.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad7274\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad7274","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

利用组合式朗缪尔探针阵列在 HL-2A 欧姆加热氘等离子体中观测到了峰值为 f ≈ 2.0 kHz 的低频带状流(LFZF-like)结构。这种时变势能结构具有轴对称特性(n = 0)和有限的径向相关长度(小于 1 厘米),经确认是由小尺度湍流中的三波相互作用产生的。结果表明,LFZF 样结构的振幅随着杂质离子的影响而急剧增大,这主要是由于湍流涡旋对称性破坏过程中非线性能量转移强度的增加。因此,增强的 LFZF 类结构能够通过剪切相关机制稳定局部湍流,这一点在本实验中得到了证实。这里给出的观测结果揭示了类 LFZF 结构在降低湍流水平方面所起的重要作用,这将推动我们对支配湍流的多尺度物理以及由此产生的磁约束等离子体中的传输的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of turbulence by enhanced low-frequency zonal flow-like structures in HL-2A edge plasmas
A low-frequency zonal flow-like (LFZF-like) structure peaking at f ≈ 2.0 kHz has been observed in HL-2A ohmically heated deuterium plasmas using a combined Langmuir probe array. This time-varying potential structure, which has axisymmetric characteristics (n = 0) and a finite radial correlation length (less than 1 cm), was identified to be generated by the three-wave interaction in small-scale turbulence. The results illustrate that the amplitude of the LFZF-like structure dramatically increases with the influence of impurity ions, which is mainly due to the increased strength in the nonlinear energy transfer by the turbulence vortex symmetry-breaking process. Consequently, the enhanced LFZF-like structure has the ability to stabilize the local turbulence via the shearing decorrelation mechanism as demonstrated in this experiment. The observed results given here reveal the essential role played by the LFZF-like structure in the reduction of turbulence levels, which could advance our understanding of the multi-scale physics governing turbulence and the resulting transport in magnetically confined plasmas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Fusion
Nuclear Fusion 物理-物理:核物理
CiteScore
6.30
自引率
39.40%
发文量
411
审稿时长
2.6 months
期刊介绍: Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes: -the production, heating and confinement of high temperature plasmas; -the physical properties of such plasmas; -the experimental or theoretical methods of exploring or explaining them; -fusion reactor physics; -reactor concepts; and -fusion technologies. The journal has a dedicated Associate Editor for inertial confinement fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信