Moses O. Nnaji, David A. Tavakoli, Dale A. Hitchcock, Eric M. Vogel
{"title":"反应多层系统沉积后退火过程中低温形成的 Ti2AlN","authors":"Moses O. Nnaji, David A. Tavakoli, Dale A. Hitchcock, Eric M. Vogel","doi":"10.1063/5.0230405","DOIUrl":null,"url":null,"abstract":"Mn+1AXn-phase Ti2AlN thin-films were synthesized using reactive sputtering-based methods involving the deposition of single-layer TiAlN, and Ti/AlN and TiN/TiAl multilayers of various modulation periods at ambient temperature and subsequent annealing at elevated temperatures. Ex situ and in situ x-ray diffraction measurements were used to characterize the Ti2AlN formation temperature and phase fraction. During annealing, Ti/AlN multilayers yielded Ti2AlN at a significantly lower in situ temperature of 650 °C compared to TiN/TiAl multilayers or single-layer TiAlN (750 °C). The results suggest a reactive multilayer mechanism whereby distinct Ti and AlN layers react readily to release exothermic energy resulting in lower phase transition temperatures compared to TiN and TiAl layers or mixed TiAlN. With a modulation period of 5 nm, however, Ti/AlN multilayers yielded Ti2AlN at a higher temperature of 750 °C, indicating a disruption of the reactive multilayer mechanism due to a higher fraction of low-enthalpy interfacial TiAlN within the film.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature formation of Ti2AlN during post-deposition annealing of reactive multilayer systems\",\"authors\":\"Moses O. Nnaji, David A. Tavakoli, Dale A. Hitchcock, Eric M. Vogel\",\"doi\":\"10.1063/5.0230405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mn+1AXn-phase Ti2AlN thin-films were synthesized using reactive sputtering-based methods involving the deposition of single-layer TiAlN, and Ti/AlN and TiN/TiAl multilayers of various modulation periods at ambient temperature and subsequent annealing at elevated temperatures. Ex situ and in situ x-ray diffraction measurements were used to characterize the Ti2AlN formation temperature and phase fraction. During annealing, Ti/AlN multilayers yielded Ti2AlN at a significantly lower in situ temperature of 650 °C compared to TiN/TiAl multilayers or single-layer TiAlN (750 °C). The results suggest a reactive multilayer mechanism whereby distinct Ti and AlN layers react readily to release exothermic energy resulting in lower phase transition temperatures compared to TiN and TiAl layers or mixed TiAlN. With a modulation period of 5 nm, however, Ti/AlN multilayers yielded Ti2AlN at a higher temperature of 750 °C, indicating a disruption of the reactive multilayer mechanism due to a higher fraction of low-enthalpy interfacial TiAlN within the film.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230405\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0230405","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
采用基于反应溅射的方法合成了锰+1AXn 相 Ti2AlN 薄膜,包括在环境温度下沉积单层 TiAlN 以及不同调制周期的 Ti/AlN 和 TiN/TiAl 多层膜,然后在高温下退火。利用原位和原位 X 射线衍射测量来确定 Ti2AlN 的形成温度和相分数。在退火过程中,与 TiN/TiAl 多层膜或单层 TiAlN(750 ℃)相比,Ti/AlN 多层膜在 650 ℃ 的原位温度下生成了 Ti2AlN。结果表明了一种反应性多层机制,即不同的 Ti 和 AlN 层容易发生反应,释放放热能量,从而导致相变温度低于 TiN 和 TiAl 层或混合 TiAlN。然而,当调制周期为 5 nm 时,Ti/AlN 多层在 750 °C 的较高温度下产生了 Ti2AlN,这表明由于薄膜中低焓界面 TiAlN 的比例较高,反应性多层机制受到了破坏。
Low-temperature formation of Ti2AlN during post-deposition annealing of reactive multilayer systems
Mn+1AXn-phase Ti2AlN thin-films were synthesized using reactive sputtering-based methods involving the deposition of single-layer TiAlN, and Ti/AlN and TiN/TiAl multilayers of various modulation periods at ambient temperature and subsequent annealing at elevated temperatures. Ex situ and in situ x-ray diffraction measurements were used to characterize the Ti2AlN formation temperature and phase fraction. During annealing, Ti/AlN multilayers yielded Ti2AlN at a significantly lower in situ temperature of 650 °C compared to TiN/TiAl multilayers or single-layer TiAlN (750 °C). The results suggest a reactive multilayer mechanism whereby distinct Ti and AlN layers react readily to release exothermic energy resulting in lower phase transition temperatures compared to TiN and TiAl layers or mixed TiAlN. With a modulation period of 5 nm, however, Ti/AlN multilayers yielded Ti2AlN at a higher temperature of 750 °C, indicating a disruption of the reactive multilayer mechanism due to a higher fraction of low-enthalpy interfacial TiAlN within the film.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces