数据中心网络中的生成式人工智能:基础、视角和案例研究

Yinqiu Liu, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Yonggang Wen, Dong In Kim
{"title":"数据中心网络中的生成式人工智能:基础、视角和案例研究","authors":"Yinqiu Liu, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Yonggang Wen, Dong In Kim","doi":"arxiv-2409.09343","DOIUrl":null,"url":null,"abstract":"Generative AI (GenAI), exemplified by Large Language Models (LLMs) such as\nOpenAI's ChatGPT, is revolutionizing various fields. Central to this\ntransformation is Data Center Networking (DCN), which not only provides the\ncomputational power necessary for GenAI training and inference but also\ndelivers GenAI-driven services to users. This article examines an interplay\nbetween GenAI and DCNs, highlighting their symbiotic relationship and mutual\nadvancements. We begin by reviewing current challenges within DCNs and discuss\nhow GenAI contributes to enhancing DCN capabilities through innovations, such\nas data augmentation, process automation, and domain transfer. We then focus on\nanalyzing the distinctive characteristics of GenAI workloads on DCNs, gaining\ninsights that catalyze the evolution of DCNs to more effectively support GenAI\nand LLMs. Moreover, to illustrate the seamless integration of GenAI with DCNs,\nwe present a case study on full-lifecycle DCN digital twins. In this study, we\nemploy LLMs equipped with Retrieval Augmented Generation (RAG) to formulate\noptimization problems for DCNs and adopt Diffusion-Deep Reinforcement Learning\n(DRL) for optimizing the RAG knowledge placement strategy. This approach not\nonly demonstrates the application of advanced GenAI methods within DCNs but\nalso positions the digital twin as a pivotal GenAI service operating on DCNs.\nWe anticipate that this article can promote further research into enhancing the\nvirtuous interaction between GenAI and DCNs.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"215 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative AI in Data Center Networking: Fundamentals, Perspectives, and Case Study\",\"authors\":\"Yinqiu Liu, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Yonggang Wen, Dong In Kim\",\"doi\":\"arxiv-2409.09343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative AI (GenAI), exemplified by Large Language Models (LLMs) such as\\nOpenAI's ChatGPT, is revolutionizing various fields. Central to this\\ntransformation is Data Center Networking (DCN), which not only provides the\\ncomputational power necessary for GenAI training and inference but also\\ndelivers GenAI-driven services to users. This article examines an interplay\\nbetween GenAI and DCNs, highlighting their symbiotic relationship and mutual\\nadvancements. We begin by reviewing current challenges within DCNs and discuss\\nhow GenAI contributes to enhancing DCN capabilities through innovations, such\\nas data augmentation, process automation, and domain transfer. We then focus on\\nanalyzing the distinctive characteristics of GenAI workloads on DCNs, gaining\\ninsights that catalyze the evolution of DCNs to more effectively support GenAI\\nand LLMs. Moreover, to illustrate the seamless integration of GenAI with DCNs,\\nwe present a case study on full-lifecycle DCN digital twins. In this study, we\\nemploy LLMs equipped with Retrieval Augmented Generation (RAG) to formulate\\noptimization problems for DCNs and adopt Diffusion-Deep Reinforcement Learning\\n(DRL) for optimizing the RAG knowledge placement strategy. This approach not\\nonly demonstrates the application of advanced GenAI methods within DCNs but\\nalso positions the digital twin as a pivotal GenAI service operating on DCNs.\\nWe anticipate that this article can promote further research into enhancing the\\nvirtuous interaction between GenAI and DCNs.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":\"215 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以 OpenAI 的 ChatGPT 等大型语言模型 (LLM) 为代表的生成式人工智能 (GenAI) 正在各个领域掀起一场革命。数据中心网络(DCN)是这场变革的核心,它不仅为 GenAI 的训练和推理提供了必要的计算能力,还为用户提供了 GenAI 驱动的服务。本文探讨了 GenAI 与 DCN 之间的相互作用,强调了它们之间的共生关系和共同进步。我们首先回顾了 DCN 当前面临的挑战,并讨论了 GenAI 如何通过数据增强、流程自动化和领域转移等创新来增强 DCN 的能力。然后,我们重点分析了 DCN 上 GenAI 工作负载的显著特点,获得了促进 DCN 演进的见解,从而更有效地支持 GenAI 和 LLM。此外,为了说明 GenAI 与 DCN 的无缝集成,我们介绍了一项关于全生命周期 DCN 数字双胞胎的案例研究。在这项研究中,我们利用配备检索增强生成(RAG)的 LLM 为 DCN 提出优化问题,并采用扩散-深度强化学习(DRL)优化 RAG 知识放置策略。这种方法不仅展示了先进的 GenAI 方法在 DCN 中的应用,还将数字孪生定位为在 DCN 上运行的关键 GenAI 服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative AI in Data Center Networking: Fundamentals, Perspectives, and Case Study
Generative AI (GenAI), exemplified by Large Language Models (LLMs) such as OpenAI's ChatGPT, is revolutionizing various fields. Central to this transformation is Data Center Networking (DCN), which not only provides the computational power necessary for GenAI training and inference but also delivers GenAI-driven services to users. This article examines an interplay between GenAI and DCNs, highlighting their symbiotic relationship and mutual advancements. We begin by reviewing current challenges within DCNs and discuss how GenAI contributes to enhancing DCN capabilities through innovations, such as data augmentation, process automation, and domain transfer. We then focus on analyzing the distinctive characteristics of GenAI workloads on DCNs, gaining insights that catalyze the evolution of DCNs to more effectively support GenAI and LLMs. Moreover, to illustrate the seamless integration of GenAI with DCNs, we present a case study on full-lifecycle DCN digital twins. In this study, we employ LLMs equipped with Retrieval Augmented Generation (RAG) to formulate optimization problems for DCNs and adopt Diffusion-Deep Reinforcement Learning (DRL) for optimizing the RAG knowledge placement strategy. This approach not only demonstrates the application of advanced GenAI methods within DCNs but also positions the digital twin as a pivotal GenAI service operating on DCNs. We anticipate that this article can promote further research into enhancing the virtuous interaction between GenAI and DCNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信