希钦小面上堆叠的 p$-adic 黎曼-希尔伯特对应关系

Yudong Liu, Chenglong Ma, Xiecheng Nie, Xiaoyu Qu, Yupeng Wang
{"title":"希钦小面上堆叠的 p$-adic 黎曼-希尔伯特对应关系","authors":"Yudong Liu, Chenglong Ma, Xiecheng Nie, Xiaoyu Qu, Yupeng Wang","doi":"arxiv-2409.08785","DOIUrl":null,"url":null,"abstract":"Let $C$ be an algebraically closed perfectoid field over $\\Qp$ with the ring\nof integer $\\calO_C$ and the infinitesimal thickening $\\Ainf$. Let $\\frakX$ be\na smooth formal scheme over $\\calO_C$ with a fixed smooth lifting $\\wtx$ over\n$\\Ainf$. Let $X$ be the generic fiber of $\\frakX$ and $\\wtX$ be its lifting\nover $\\BdRp$ induced by $\\wtx$. Let $\\MIC_r(\\wtX)^{{\\rm H-small}}$ and\n$\\rL\\rS_r(X,\\BBdRp)^{{\\rm H-small}}$ be the $v$-stacks of rank-$r$\nHitchin-small integrable connections on $\\wtX_{\\et}$ and $\\BBdRp$-local systems\non $X_{v}$, respectively. In this paper, we establish an equivalence between\nthis two stacks by introducing a new period sheaf with connection\n$(\\calO\\bB_{\\dR,\\pd}^+,\\rd)$ on $X_{v}$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stacky $p$-adic Riemann--Hilbert correspondence on Hitchin-small locus\",\"authors\":\"Yudong Liu, Chenglong Ma, Xiecheng Nie, Xiaoyu Qu, Yupeng Wang\",\"doi\":\"arxiv-2409.08785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $C$ be an algebraically closed perfectoid field over $\\\\Qp$ with the ring\\nof integer $\\\\calO_C$ and the infinitesimal thickening $\\\\Ainf$. Let $\\\\frakX$ be\\na smooth formal scheme over $\\\\calO_C$ with a fixed smooth lifting $\\\\wtx$ over\\n$\\\\Ainf$. Let $X$ be the generic fiber of $\\\\frakX$ and $\\\\wtX$ be its lifting\\nover $\\\\BdRp$ induced by $\\\\wtx$. Let $\\\\MIC_r(\\\\wtX)^{{\\\\rm H-small}}$ and\\n$\\\\rL\\\\rS_r(X,\\\\BBdRp)^{{\\\\rm H-small}}$ be the $v$-stacks of rank-$r$\\nHitchin-small integrable connections on $\\\\wtX_{\\\\et}$ and $\\\\BBdRp$-local systems\\non $X_{v}$, respectively. In this paper, we establish an equivalence between\\nthis two stacks by introducing a new period sheaf with connection\\n$(\\\\calO\\\\bB_{\\\\dR,\\\\pd}^+,\\\\rd)$ on $X_{v}$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$C$是一个在$\Qp$上的代数封闭的完形域,具有整数环$\calO_C$和无穷小增厚$\Ainf$。让 $frakX$ 是一个在 $calO_C$ 上的光滑形式方案,在 $Ainf$ 上有一个固定的光滑提升 $\wtx$。让 $X$ 是 $frakX$ 的一般纤维,$wtX$ 是它在 $BdRp$ 上由 $\wtx$ 引起的提升。让$\MIC_r(\wtX)^{{\rm H-small}}$和$\rL\rS_r(X,\BBdRp)^{\{rm H-small}}$分别是$\wtX_{\et}$和$\BBdRp$-local systemson $X_{v}$ 上的秩-$r$希钦-小可积分连接的$v$栈。在本文中,我们通过在 $X_{v}$ 上引入一个具有连接$(\calO\b_{\dR,\pd}^+,\rd)$的新周期舍夫,在这两个堆栈之间建立了等价关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stacky $p$-adic Riemann--Hilbert correspondence on Hitchin-small locus
Let $C$ be an algebraically closed perfectoid field over $\Qp$ with the ring of integer $\calO_C$ and the infinitesimal thickening $\Ainf$. Let $\frakX$ be a smooth formal scheme over $\calO_C$ with a fixed smooth lifting $\wtx$ over $\Ainf$. Let $X$ be the generic fiber of $\frakX$ and $\wtX$ be its lifting over $\BdRp$ induced by $\wtx$. Let $\MIC_r(\wtX)^{{\rm H-small}}$ and $\rL\rS_r(X,\BBdRp)^{{\rm H-small}}$ be the $v$-stacks of rank-$r$ Hitchin-small integrable connections on $\wtX_{\et}$ and $\BBdRp$-local systems on $X_{v}$, respectively. In this paper, we establish an equivalence between this two stacks by introducing a new period sheaf with connection $(\calO\bB_{\dR,\pd}^+,\rd)$ on $X_{v}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信