立方场形状中的低阶项

Robert Hough, Eun Hye Lee
{"title":"立方场形状中的低阶项","authors":"Robert Hough, Eun Hye Lee","doi":"arxiv-2409.08417","DOIUrl":null,"url":null,"abstract":"We demonstrate equidistribution of the lattice shape of cubic fields when\nordered by discriminant, giving an estimate in the Eisenstein series spectrum\nwith a lower order main term. The analysis gives a separate discussion of the\ncontributions of reducible and irreducible binary cubic forms, following a\nmethod of Shintani. Our work answers a question posed at the American Institute\nof Math by giving a precise geometric and spectral description of an evident\nbarrier to equidistribution in the lattice shape.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower order terms in the shape of cubic fields\",\"authors\":\"Robert Hough, Eun Hye Lee\",\"doi\":\"arxiv-2409.08417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate equidistribution of the lattice shape of cubic fields when\\nordered by discriminant, giving an estimate in the Eisenstein series spectrum\\nwith a lower order main term. The analysis gives a separate discussion of the\\ncontributions of reducible and irreducible binary cubic forms, following a\\nmethod of Shintani. Our work answers a question posed at the American Institute\\nof Math by giving a precise geometric and spectral description of an evident\\nbarrier to equidistribution in the lattice shape.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了按判别式排序时立方场晶格形状的等分布,给出了带有低阶主项的爱森斯坦数列谱的估计值。分析按照新谷(Shintani)的方法,对可还原和不可还原二元三次形式的贡献进行了单独讨论。我们的工作回答了在美国数学研究所提出的一个问题,给出了对晶格形状中等分布的明显障碍的精确几何和光谱描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower order terms in the shape of cubic fields
We demonstrate equidistribution of the lattice shape of cubic fields when ordered by discriminant, giving an estimate in the Eisenstein series spectrum with a lower order main term. The analysis gives a separate discussion of the contributions of reducible and irreducible binary cubic forms, following a method of Shintani. Our work answers a question posed at the American Institute of Math by giving a precise geometric and spectral description of an evident barrier to equidistribution in the lattice shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信